Antpedia LOGO WIKI资讯

PNAS:新型神经细胞培养基克服传统障碍

体内的神经电活动是神经系统功能的本质,控制着感官、情感、记忆、行为和基本的生存机能。因此,要在实验室内研究神经元,很重要的一点是,在体外培养的神经元模型也支持这种电活动,才能反映基本的大脑功能,目前大多数的人类神经元培养是使用传统培养基DMEM(Dulbecco的改良Eagle培养基)、Neurobasal或两者的混合物。与此相反,室内试验在脑切片或培养物使用电生理技术–如膜片钳(允许单个或多个细胞离子通道的研究)、钙成像,是在人工脑脊液(aCSF)培养基中进行的。 最近,美国索尔克生物研究所、Sanford再生医学财团的科学家,使用诱导多功能干细胞(iPSCs),在体外模拟人类神经系统疾病,应用电生理技术测试DMEM和Neurobasal,以确定它们对基本神经元活动的影响。令人惊讶的是,科学家发现,即使这些是传统的培养基,它们也会强烈地改变许多重要的神经生理特性。在决定设计一种新的培养基之前,研究人员测试了各种市售的可用......阅读全文

细胞培养培养基

  绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和代谢添加剂(例如

神经细胞培养基总结-1

培养细胞的完全培养基由基础培养基(如MEM)和添加剂(如血清或无血清培养用的某些确定的激素及生长因子)组成,培养基的配方一直在改进,其中包括抗生素和抗有丝分裂剂等等。 基础培养基 绝大多数培养基是建立在平衡盐溶液(BSS) 基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛

细胞培养培养基(基础培养基、血清、无血清培养基、抗...4

基础培养基绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是 Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和

细胞培养培养基(基础培养基、血清、无血清培养基、抗生...

基础培养基绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是 Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和

细胞培养培养基(基础培养基、血清、无血清培养基、...2

基础培养基绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是 Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和

细胞培养培养基(基础培养基、血清、无血清培养基、抗...2

基础培养基绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是 Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和

细胞培养基怎么选择

细胞培养是在已经从其宿主生物体中移除的人造环境细胞中生长的过程。无论它们的来源如何,这些细胞的成功繁殖依赖于使用专门的培养基,这些培养基经过精心设计,有利于健康的生长和维持。在研究这种多样化的细胞类型的情况下,可用的培养基配方的范围似乎是压倒性的,但是为了选择合适的培养基产品,非常值得花时间研究每种

背根神经节细胞的原代培养实验

            实验方法原理 原代培养是指由体内取出组织或细胞进行的首次培养,也叫初代培养。原代培养离体时间短,遗传性状和体内细胞相似,适于做细胞形态、功能和分化等研究。较为严格地说是指成功传代之前

背根神经节细胞的原代培养实验

实验方法原理 背根神经节(dorsalrootganglion,DRG)细胞起源千神经峙,外源性神经营养因子(NGF)能刺激DRG细胞生长发育并形成广泛的神经网络。目前,利用培养的DRG细胞进行轴突生长发育的研究,是最为经典和常用的方法之一。实验材料 孵化8-12d的鸡胚。孕15d及新生1-3d的大

皮层/海马神经元的原代培养

实验方法原理 神经元在发育过程中早于胶质细胞,因此通常选择胎鼠做脑内神经元培养。一般取El7-l8d孕大鼠或El4-16d孕小鼠做神经元培养。新生1d的仔鼠也可以用来培养神经元,但培养成功后杂细胞较多,有时需要进一步纯化。这两个部位的细胞培养方法类似实验材料 El7-18d孕大鼠或E14-16d孕小

皮层/海马神经元的原代培养实验

基本方案             实验方法原理 神经元在发育过程中早于胶质细胞,因此通常选择胎鼠做脑内神经元培养。一般取E

背根神经节细胞的原代培养实验

实验方法原理原代培养是指由体内取出组织或细胞进行的首次培养,也叫初代培养。原代培养离体时间短,遗传性状和体内细胞相似,适于做细胞形态、功能和分化等研究。较为严格地说是指成功传代之前的培养,此时的细胞保持原有细胞的基本性质,如果是正常细胞,仍然保留二倍体数。但实际上,通常把第一代至第十代以内的培养细胞

皮层/海马神经元的原代培养实验

实验方法原理神经元在发育过程中早于胶质细胞,因此通常选择胎鼠做脑内神经元培养。一般取El7-l8d孕大鼠或El4-16d孕小鼠做神经元培养。新生1d的仔鼠也可以用来培养神经元,但培养成功后杂细胞较多,有时需要进一步纯化。这两个部位的细胞培养方法类似实验材料El7-18d孕大鼠或E14-16d孕小鼠新

xCELLigence系统实时检测神经毒性(一)

xCELLigence系统持续检测神经细胞培养Sebastian Diemert, Julia Grohm, Svenja,Tobaben, Amalia Dolga, Carsten Culmsee德国,马尔堡大学,药理学与临床药学研究所摘要:为了研究类神经元细胞HT-22,及原代培养大鼠皮质神经

Nature报道中科院最新研究成果

  人体每天排出的一些废物有可能成为强大的脑细胞来源用于研究疾病,甚至有一天还可能用于神经退行性疾病的治疗。科学家们发现了一种相对简单的方法将人体尿液排出的细胞诱导生成有价值的神经元。   研究论文在线发布于本周的《自然方法》(Nature Methods)杂志上,Nature官网第一时间对相

海马神经元细胞的分离及培养

实验概要从海马体中分离到神经元细胞,然后进行培养细胞以便进行其他的实验研究。主要试剂解剖液MEMHBSS主要设备L-多聚赖氨酸包被的平皿或盖玻片实验材料出生24h内的乳鼠实验步骤1. 用冷却的解剖液(0℃,最高2-3℃)冲洗海马两次。2. 在冷却解剖液(2-3℃)中解剖无脑膜的海马。3. 加入胰蛋白

离体神经突触的代谢性标记实验

试剂、试剂盒 固定剂温育液氯霉素放射自显影乳剂显影剂SDS样本缓冲液实验步骤 一、放射自显影神经元在条件培养基中培养 2d,如第十章所述。1.用一个锋利的微电极从胞体分离神经突起,并用牵引电极将胞体移出培养皿 (见第十章)。2.在培养液中加入终浓度 0.lmmol/L 氯霉素,阻断线粒体蛋白的合成。

离体神经突触的代谢性标记实验

mRNA 和 rRNA 存在于树突和轴突内(VanMinnen1994;Steward1997)。令人疑惑不解的是,位于胞体外区域的 mRNA 是否真的被翻译。下面的方法可以证明神经突起确实可以不依赖胞体而合成蛋白。现代神经科学研究技术作者:U.Windhorst & H

内源性FSTL1 通过激活钠-钾泵引起的膜超极化调节痛觉...

内源性FSTL1 通过激活钠-钾泵引起的膜超极化调节痛觉信息传递突触是神经细胞间信息传递的关键部位,信号从一个神经元传递到另一个神经元需要通过突触这一“关卡”。神经元的膜电位和兴奋性对于调节其功能起十分重要的作用。神经元消耗能量,通过钠‐钾泵(Na+, K+‐ATPase,NKA)在细胞浆中

小鼠原代海马神经元细胞的分离培养方法

原代小知识——小鼠原代海马神经元细胞的分离培养方法海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞

离体神经突触的代谢性标记实验

            试剂、试剂盒 固定剂 温育液 氯霉素 放射自显影乳剂 显影剂 SDS样本缓冲液

xCELLigence系统实时检测神经毒性(三)

3.3 原代皮质神经元培养     分离原代大鼠皮质神经元细胞(Primary rat cortical neurons,PCNs),并将其接种于PEI-包被的 E-Plate 96 孔板上,每孔接种的细胞密度不同,接种密度范围为 8000 至 32000 个细

无标记活细胞动态分析技术在神经生物学方面的应用 一

还原最真实的细胞变化 - 无标记分析,神经生物学研究的新利器 神经生物学是生物学中研究神经系统的解剖、生理和病理方面内容的一个分支。神经科学寻求解释神智活动的生物学机制,即细胞生物学和分子生物学机制。近年来神经干细胞逐渐成为神经生物学中的一大研究热点。神经干细胞是一群能自我修复和具有多种分化潜能的细

Nature:老化大脑的保护因子

  阿尔兹海默病(Alzheimer’s disease)是引发痴呆的主要原因。据估计,在美国,年龄在65岁以上的人群中有13%的个体罹患了这种疾病,而年龄在85岁以上的人群中有近三分之一的个体罹患了这种疾病。随着人口老龄化的加剧,阿尔兹海默病患者的数量预计将会急剧增加,但是目前仍然没有行之有效

通过高内涵分析软件进行人体干细胞诱导神经元细胞系...

通过高内涵分析软件进行人体干细胞诱导神经元细胞系的3D模型表征分析简介开发更复杂的、生物相关的和预测的基于细 胞的化合物筛选方法是药物发现中的一个主 要挑战。三维 (3D) 分析模型的开发和集成 正变得越来越流行,并驱动着生物转化学 的发展。具体而言,3D 培养物具有精致浓 缩了人体组织各方面特

“迷你人造大脑”产生类似人脑的脑电波信号

  近日,来自美国加州大学的研究人员在《细胞–干细胞》杂志发表题为“Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development”的文章。该研究团队在实验室

起死回生:用干细胞逆转死亡,试验即将开始

  美国Bioquark公司将在今年 启动一项颇具争议的研究,他们希望用干细胞来实现一项看似不可能的任务——逆转死亡。  Bioquark的全套疗法  开展这项研究的是位于费城的Bioquark公司,这里的研究人员将干细胞注射至已被宣告脑死亡的患者的脊髓中。同时,受试者还将接受混合蛋白质的注射、对神

人类或有机会修饰大脑发育过程

  在英国《自然》杂志25日发表的两项神经科学成果中,美国科学家报告了发育中人脑的两个三维模型,这些系统让研究人员有机会在培养的细胞中研究和修饰大脑发育的关键过程,对理解正常的大脑发育和某些疾病(如自闭症谱系障碍和精神分裂症)的神经发育根源很有帮助。  随着人类胎脑的发育,γ-氨基丁酸能神经元会从腹

大脑发育的神经网络建模

  本周《自然》发表的两篇研究Assembly of functionally integrated human forebrain spheroids和Cell diversity and network dynamics in photosensitive human brain organoi

大鼠神经元细胞分离和培养实验_培养神经元支持物制备

试剂、试剂盒浓硝酸仪器、耗材玻璃盖玻片层流柜实验步骤一、盖玻片的预处理1. 玻璃盖玻片放在瓷染色架上,用蒸馏水冲洗。2. 架子放在玻璃容器中,浓硝酸泡 48 小时。3. MilliQ 水漂洗盖玻片 1 小时,重复 3 次。4. 200℃ 烤 8 小时灭菌盖玻片。5. 在层流柜中将盖玻片放在 60 m