Nature子刊发布重大测序成果:长颈鹿的脖子为何这么长

当你真正站在长颈鹿面前的时候,很可能会发出一声惊叹。这些身高接近六米的庞然大物是世界上最高的陆生动物,它们拥有异乎寻常的长脖子和大长腿,并且能够高速奔跑。长颈鹿还具备超乎想象的心血管功能,它们的心脏就像一个强悍的泵,能将血液送入比心脏高两米的大脑。 那么,长颈鹿是如何进化成这个样子的呢?这是一个充满吸引力的生物学谜题,拉马克和达尔文都曾尝试用自己的理论进行解释。现在,科学家们首次完成了长颈鹿及其近亲(okapi)的基因组测序,揭示了推动长颈鹿进化的遗传学改变。这项研究发表在五月十七日的Nature Communications杂志上。 研究人员将长颈鹿和okapi的基因编码序列与四十多种哺乳动物(包括奶牛、绵羊、山羊、骆驼和人类)进行了比较。“okapi的基因序列与长颈鹿非常相似,” 宾州大学的Douglas Cavener说。“虽然它们亲缘关系很近,但okapi看起来更像斑马,既没有长颈鹿的高度,心血管功能也没那么强。......阅读全文

长颈鹿长脖子的真正原因

这项研究的作者对现代长颈鹿长脖子的起源提出了另一种理论:长颈鹿需要长脖子来进行头部撞击,以争夺配偶。对早期长颈鹿祖先独特的头部和颈部化石的分析支持了这一理论,这些化石包括圆盘状头盔状的头套和高度复杂的头颈关节。自从查尔斯·达尔文最初提出适应性进化和自然选择的思想以来,现代长颈鹿——地球上最高的陆地动

Nature子刊发布重大测序成果:长颈鹿的脖子为何这么长

  当你真正站在长颈鹿面前的时候,很可能会发出一声惊叹。这些身高接近六米的庞然大物是世界上最高的陆生动物,它们拥有异乎寻常的长脖子和大长腿,并且能够高速奔跑。长颈鹿还具备超乎想象的心血管功能,它们的心脏就像一个强悍的泵,能将血液送入比心脏高两米的大脑。  那么,长颈鹿是如何进化成这个样子的呢?这是一

Nature子刊发布重大测序成果:长颈鹿的脖子为何这么长

  当你真正站在长颈鹿面前的时候,很可能会发出一声惊叹。这些身高接近六米的庞然大物是世界上最高的陆生动物,它们拥有异乎寻常的长脖子和大长腿,并且能够高速奔跑。长颈鹿还具备超乎想象的心血管功能,它们的心脏就像一个强悍的泵,能将血液送入比心脏高两米的大脑。  那么,长颈鹿是如何进化成这个样子的呢?这是一

2016热门基因组测序,华大基因风头劲

  大千世界无奇不有,这都是进化的功劳。大航海时代,科学家们扬帆远航去探索大自然的神奇造化。如今,科学家们正在测序技术的帮助下进一步揭示生命的奥秘。The scientist杂志对近期最热门的一些基因组测序成果进行了盘点,华大基因参与的两项测序研究格外引人瞩目。  种属:大西洋鲑  基因组:2.97

长读长测序技术:拯救基因组组装项目

  随着高精度长读长测序技术的出现,基因组难以组装的状态正在改变。《Nature Methods》杂志上近日发表了一篇文章,介绍了基因组组装项目如何受益于这种技术。  自测序技术问世以来,利用DNA序列的片段来组装人类、动植物或微生物的基因组就一直是难题。许多参考基因组都存在缺陷,如组装错误或存在缺

近期最热门的基因组测序成果

  大千世界无奇不有,这都是进化的功劳。大航海时代,科学家们扬帆远航去探索大自然的神奇造化。如今,科学家们正在测序技术的帮助下进一步揭示生命的奥秘。The scientist杂志对近期最热门的一些基因组测序成果进行了盘点,华大基因参与的两项测序研究格外引人瞩目。  种属:长颈鹿和okapi  基因组

两篇Nature子刊发表基因组测序成果为新药开发提供新线索

  科学家们对造成盘尾丝虫病的寄生虫进行基因组测序,揭示了这种寄生虫的活动方式,鉴定了可以被现有药物靶标的蛋白,为新药和疫苗开发提供了线索。这项研究以两篇文章的形式发表在本周的Nature Microbiology杂志上。  据世界卫生组织(WHO)统计,全世界有一千八百万人受到盘尾丝虫病的影响,主

邱强/王文等揭示长颈鹿适应高血压的潜在机制

  Science Advances | 西北工业大学等多单位合作  iNature  长颈鹿由于其异常长的脖子和腿而立即被识别出来,使其成为最高的陆生动物。长颈鹿在包括Lamarck和Darwin在内的不同进化思想流派中起着核心作用。据认为,它们不寻常的解剖结构具有多种选择优势。  2021年3月

GenomeBiology发布基因组测序重要成果

Genome Biology杂志发布了远东豹(Far Eastern Amur leopard)的首个全基因组序列,为人们揭示了肉食对基因多样性和种群规模的影响。“我们将远东豹基因组与其它哺乳动物基因组进行比较,发现肉食似乎是很强的选择压力。这种现象在杂食动物和食草动物中并不明显。举例来说,牛吃肉对

长读长测序显优势-基因组复杂结构变异检测实现新突破

  基因组结构变异是很多癌症、遗传病等疾病的重要诱因。目前基于二代测序技术检测基因组结构变异存在很大的局限性,而三代测序存在错误率较高等多种问题,尤其针对复杂结构变异大多软件识别能力较差。针对这一问题,近日,在Nature Methods发表的一项最新研究中,研究人员开发了基因组比对工具NGMLR和

《Nature-Genetics》长读长测序鉴定隐藏变异

  鉴定生命基因组中的复杂突变一直都很困难。加州大学欧文分校(University of California  -Irvine)生态学和进化生物学副教授J.J. Emerson的研究团队最近在《Nature Genetics》发表文章,他们开发了一款基因分析方法,能以前所未有的分辨率水平识别复杂突

基因组测序

如果楼主指的是人类基因组计划,那时用的方法叫做双脱氧终止法,也叫做sanger法。它的原理是在DNA合成过程中,DNA聚合酶能够使用ddNTP(双脱氧核苷酸)来作为原料,但它的反应会在加入ddNTP的时候终止。具体实验是通过PCR来完成的,但与普通PCR不同,它只需要一个引物而不是一对。在4个相同的

长读长测序的“灾难”——检测结构变异成为空谈!

   长读长测序技术以其读长的优势,能够更大程度的检测结构变异(Structural Variations,SV)。然而面对市面上常见的Nanopore测序技术,检测结构变异的事实真的如此吗?在今年11月bioRxiv杂志上发表的文章则指出:使用Nanopore对具有反向重复结构的CNV序列进行DN

纳米孔直接RNA和cDNA长读长测序概述

  RNA测序已经在生物学和医学的各个领域取得了前所未有的发展。在包括癌症在内的诸多疾病中,转录异构体的表达和用途是健康组织和患病组织之间变异的重要来源。鉴定差异剪接的异构体和融合转录本,可以为疾病的诊断和治疗提供信息。RNA测序还有助于揭示从单细胞到整个组织的转录组动力学。同时,cDNA测序也极大

纳米孔直接RNA和cDNA长读长测序概述

  RNA测序已经在生物学和医学的各个领域取得了前所未有的发展。在包括癌症在内的诸多疾病中,转录异构体的表达和用途是健康组织和患病组织之间变异的重要来源。鉴定差异剪接的异构体和融合转录本,可以为疾病的诊断和治疗提供信息。RNA测序还有助于揭示从单细胞到整个组织的转录组动力学。同时,cDNA测序也极大

-长读取测序揭秘转录本结构

  短读取的 RNA-seq 虽然可以精确计数已表达的转录本,但无法提供这些转录本的结构信息。   现在,斯坦福大学研究人员在《自然-生物技术》(Nature Biotechnology)杂志上报告称,他们开发出了一种能保留转录本结构信息的新方法,他们通过环状 cDNA 模板和长读取测序,

东亚人易感长新冠!全球首个全基因组测序找到易感基因

  导语:新冠感染后果,因人而异,与易感基因密不可分。目前,已知长新冠与200多种症状有关,包括严重疲劳、肺功能障碍、神经疼痛以及注意力和记忆力困难。但是,导致长新冠发展的生物学机制仍不清楚。近日,科学家首次在基因中找到了问题的可能答案:在肺部和免疫细胞中均很活跃的FOXP4基因附近DNA片段,与患

解码“基因组学之父”桑格:测序,测序,测序

  “桑格当之无愧地被称为‘基因组学之父’,他的工作为人类读取和理解基因代码奠定了基础,彻底变革了生物学并极大促进了当今的医学发展。”、   有一天,65岁的英国生物化学家弗雷德里克·桑格(Frederick Sanger)突然停下手中的试验,转身走出实验室,宣布自己正式退休。那一年是1983

长读长测序可以帮助诊断结构变异导致的罕见病

最近发表的一项研究显示,长读长测序可以帮助诊断结构变异导致的罕见病,这类变异难以用短读长测序进行鉴定。斯坦福大学临床基因组服务部的研究人员近期报道,他们使用 Pacific Biosciences 公司的 Sequel 测序仪对具有未知疾病的个体进行全基因组测序,找到了短读长测序技术未能发现的致病突

基因组测序仪简介

  基因组测序仪是一种用于生物学领域的分析仪器,于2012年12月19日启用。  技术指标  个体化基因组测序仪主机/ION TORRENT主机。  主要功能  样品处理、快速的运行时间以分析单个或多个样品 支持多重文库,从而实现最大的效率和经济性 可在必要时禁用个别测序通道,以节约试剂用量。

PNAS:甜瓜基因组测序

  甜瓜在世界范围具有很高的经济价值,日前西班牙的九个研究中心通力合作,利用罗氏454平台完成了甜瓜基因组的测序。除了甜瓜的全基因组,科学家还得到了 7个特定甜瓜品种的基因组,文章发表在Proceedings of the National Academy杂志上。   联合国粮农组织2009年

认识泛基因组测序

什么是泛基因组?2005年,Tettelin等人提出了微生物泛基因组概念(pangenome,pan源自希腊语‘παν’,全部的意思),泛基因组即某一物种全部基因的总称。2009 年,Li等人首次采用新全基因组组装方法对多个人类个体基因组进行拼接,发现了个体独有的DNA序列和功能基因,并首次提出了“

长链非编码-RNA-测序案例分析

背景:人类寿命的延长伴随着神经退行性疾病的发病几率的增加,因而价格不贵的血液诊断的发展迫在眉睫。通过 RNA-seq 分析血液细胞的转录本是发现新的生物标志物的非常高效的途径。 目的:利用 Illumina 测序平台对帕金森病人白血球中 lncRNAs 进行分析,探讨其对 mRNA 选择性剪接的

长读测序技术发现蚂蚁重大基因

  蚂蚁是一种新兴的神经表观遗传学模型系统,迄今为止,虽然许多研究团队已经对各种蚂蚁进行了基因组测序,但这些测序结果并不能帮助科学家对表观遗传基因调控的复杂性进行分析。  美国宾夕法尼亚大学佩雷尔曼医学院表观遗传学研究所埃米莉·希尔兹等研究人员,使用第三代长读测序技术,极大地改进了蚂蚁的基因组测序,

基因组分析证实:突变频率越高物种寿命越短

科技日报北京4月19日电 (实习记者张佳欣)这是一个困扰科学家多年的谜团——为什么不同的动物有如此不同的寿命?人类可以活到80岁左右,而长颈鹿往往在24岁时死亡,裸鼹鼠的成年个体只有长颈鹿的两万三千分之一,但它可活到25岁。这表明,除了体型之外还有其他原因影响寿命。近日发表在《自然》杂志上的一项研究

454测序用于美洲奶牛种牛基因组测序项目

  一只名为Pawnee Farm Arlinda Chief的种牛和它的儿子Walkway Chief Mark大约有60000个后代,其后代是牛奶生产的主力。最近一项研究中1,科学家通过454全基因组测序,掌握了他们的基因组中控制重要性状的基因,包括抗病能力、牛奶产量,这些性状已通过北美的当

我国完成小麦A基因组测序

本报讯(记者丁佳)5月10日,《自然》杂志刊发了中国科学院的一项最新成果,该项研究完成了小麦A基因组的测序和染色体精细图谱的绘制。 这项由中科院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室、中科院种子创新研究院和遗传发育所基因组分析平台等合作完成的研究,全面揭示了小麦A基因组的结构和

测序解读基因组,真的好吗?

测序解读基因组,真的好吗?   “对基因组了解过多也不全是好事。”贝勒医学院生物医学伦理学副教授、医学伦理和健康中心主任Amy McGuire,在今年旧金山举办的TEDMED机构年度大会上说,“尤其是对自己基因组信息的了解。”  虽然McGuire 从事人类基因组学研究已有多年,但

白肉灵芝完成基因组测序

 在韶关产业园种植的白肉灵芝。吴清平团队 供图 近日,中国工程院院士、广东省科学院微生物研究所名誉所长吴清平团队完成了第一个白肉灵芝全基因组测序。据悉,这是世界上首次对白肉灵芝的基因组进行组装和注释。相关研究发表于《G3:基因,基因组,遗传学》(G3-Genes Genomes Genet

我国完成小麦A基因组测序

   5月10日,《自然》杂志刊发了中国科学院的一项最新成果,该项研究完成了小麦A基因组的测序和染色体精细图谱的绘制。这项由中科院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室、中科院种子创新研究院和遗传发育所基因组分析平台等合作完成的研究,全面揭示了小麦A基因组的结构和表达特征,对深入和