中国科研人员开发出“蚁群”微型机器人

中国科研人员日前开发出一种磁性微游动机器人,可像“蚁群”一样成千上万地组队协同作业,有望为高效靶向给药和体内成像提供解决方案。 发表在新一期美国《科学·机器人学》杂志上的这一研究显示,这种呈花生状的磁性机器人长3微米,直径2微米,只有头发丝直径的约四十分之一。由大量这种机器人组成的群体可在旋转磁场的调控下变为长链,在狭长的模拟毛细血管中穿行。 论文作者之一、哈尔滨工业大学机器人技术与系统国家重点实验室谢晖教授在接受新华社记者采访时说,这些机器人之间通过非常小的作用力交流,形成一个动态系统,就像蚁群用触觉或气味交流一样。 谢晖说,大自然中,群体协作可解决个体无法胜任的复杂问题,如蚁群可搬运超重猎物、鲱鱼群可捕获非常警觉的桡足类动物,研究人员受其启发,构建了微游动机器人群体,使其具备快速的环境应变能力和多任务机动功能。 研究显示,这些机器人能够模拟自然界的蚁群和鲱鱼捕食阵列,完成大负载可控输送与大面积同步集群操作。 谢......阅读全文

中国科研人员开发出“蚁群”微型机器人

  中国科研人员日前开发出一种磁性微游动机器人,可像“蚁群”一样成千上万地组队协同作业,有望为高效靶向给药和体内成像提供解决方案。  发表在新一期美国《科学·机器人学》杂志上的这一研究显示,这种呈花生状的磁性机器人长3微米,直径2微米,只有头发丝直径的约四十分之一。由大量这种机器人组成的群体可在旋转

蚁群气味的定义

中文名称蚁群气味英文名称colony odor定  义通过个体间相互接触在蚁群中传播表面信息素,使之成为群体气味。应用学科生态学(一级学科),化学生态学(二级学科)

CRISPR“剪刀”改变蚁群种系

  本报讯 基因编辑技术CRISPR革新了基因研究方式。目前,该技术已被广泛用于修饰单细胞生物体及复杂生物体内的特殊细胞类型。近日,两个独立的研究组报告称,他们使用CRISPR处理了蚂蚁卵,从而改变了整个蚁群的种系。相关论文近日发表于《细胞》杂志。   “这些研究证明人们也可以改变蚂蚁的遗传基因。

CRISPR“剪刀”改变蚁群种系

  基因编辑技术CRISPR革新了基因研究方式。目前,该技术已被广泛用于修饰单细胞生物体及复杂生物体内的特殊细胞类型。近日,两个独立的研究组报告称,他们使用CRISPR处理了蚂蚁卵,从而改变了整个蚁群的种系。相关论文近日发表于《细胞》杂志。  “这些研究证明人们也可以改变蚂蚁的遗传基因。”其中一篇论

Cell封面成果:新“功绩”!魔剪CRISPR改变蚁群种系

  基因编辑技术CRISPR革新了基因研究方式。目前,该技术已被广泛用于修饰单细胞生物体及复杂生物体内的特殊细胞类型。近日,两个独立的研究组报告称,他们使用CRISPR处理了蚂蚁卵,从而改变了整个蚁群的种系。相关论文近日发表于《细胞》杂志。  “这些研究证明人们也可以改变蚂蚁的遗传基因。”其中一篇论

会流动的微型机器人

  苏黎世ETH正在进行一项研究,有朝一日,我们只需吞下药物,就可以将微型机器人输送到病变组织。   洛桑理工学院(EPFL)的Selman Sakar领导一队科学家,从细菌中汲取灵感,设计出具有高度灵活性的智能生物相容性微型机器人。这些装置能在液体中游泳,并根据环境改变形状,因此,它们可以

蚁群在决策时的行为类似于神经网络

一项新的研究表明,的确,蚂蚁作为一个群体的行为类似于大脑中的神经元网络。洛克菲勒的Daniel Kronauer和博士后助理Asaf Gal开发了一个新的实验装置,以细致地分析蚁群的决策。据《美国国家科学院院刊》(Proceedings of the National Academy of Scie

纳米机器人手术刀群

当谈到对抗被称为胶质母细胞瘤的致命脑癌时,选择非常有限。一个加拿大研究小组采取了一种新的方法。他们诱使癌细胞吸收碳纳米管,然后通过使用磁力旋转碳纳米管来撕碎这些细胞。对小鼠的治疗缩小了肿瘤的大小并延长了啮齿动物的生命,这一发现使研究人员对人类的类似结果充满希望。胶质母细胞瘤肿瘤生长迅速,侵入局部脑组

柔性微型机器人可在体内“游泳”

  瑞士和英国研究人员日前在美国《科学进展》杂志上发表报告说,他们开发出一款柔性微型机器人。“像活体微生物”一般,这款机器人可在有黏性或快速流动的液体中“游泳”,未来有望将药物送达体内的病灶组织。  论文通讯作者、瑞士苏黎世联邦理工大学的布拉德利·内尔松说,自然界有许多随环境变化而变形的微生物,他们

微型游泳机器人有望治疗致命肺炎

北京9月22日,美国加利福尼亚大学圣地亚哥分校的纳米工程师已开发出抗肺炎微型机器人,它可在肺部四处游动,提供药物并用于清除危及生命的细菌性肺炎感染。在小鼠试验中,微型机器人安全地消除了引起肺炎的细菌,小鼠存活率达100%,相比之下,未经治疗的小鼠在感染后3天内全部死亡。研究结果22日发表在《自然·材

人类细胞造出了微型生物机器人

  机器人可以从一个成年人的细胞中创造出来,而且还无需任何基因改造,这意味着什么?  对无数患者来说,这意味着从他们自身衍生出的生物机器人,可以帮助他们恢复健康、愈合创伤、治疗疾病,这是医疗工具研发史上一个崭新的起点。  现在,美国塔夫茨大学和哈佛大学研究人员已经成功利用人类气管细胞,创建了一种微型

以声音为动力的微型机器人

  研究人员在医学微型机器人方面又向前迈进了一步,他们设计了一种微小的、快速的、自我推进的机器人,有朝一日可能直接将药物送到身体内需要的地方。微型机器人,或称微型机器人,被吹捧为下一代的药物输送系统,而且它们还在继续进步。在过去的几年里,我们已经看到了从改变形状的微型机器人到喷洒药物的微型机器鱼的进

体内“穿山甲”微型机器人问世

英国《自然·通讯》杂志20日发表的一篇工程学论文,描述了一种受穿山甲启发研制的微型机器人,该机器人被设计用于在人体内进行安全和微创的医学治疗。在未来应用中,这一无系留软体机器人能够通过变形,到达人体内难以触及的区域,如胃或小肠内。 磁性软体机器人和固体金属形态的机器人过去曾被开发用于微创医学手术

体内“穿山甲”微型机器人问世

   英国《自然·通讯》杂志20日发表的一篇工程学论文,描述了一种受穿山甲启发研制的微型机器人,该机器人被设计用于在人体内进行安全和微创的医学治疗。在未来应用中,这一无系留软体机器人能够通过变形,到达人体内难以触及的区域,如胃或小肠内。  磁性软体机器人和固体金属形态的机器人过去曾被开发用于微创医学

智能微型机器人可随周围环境“变身”

  据美国每日科学网站近日报道,瑞士洛桑联邦理工学院(EPFL)和苏黎世联邦理工学院的科学家,携手开发出一种微型柔性机器人,可根据周围环境而改变形状。未来,这款机器人或可被我们吞服,将药物直接递送到病灶组织。  自然界有许多随环境变化而变形的微生物,由EPFL的塞尔曼·萨卡尔和苏黎世联邦理工学院的布

智能微型机器人用电子“大脑”自主行走

据发表在21日的《科学·机器人》杂志的论文,美国康奈尔大学的研究人员在100到250微米大小的太阳能机器人上安装了比蚂蚁头还小的电子“大脑”,这样它们就可以在不受外部控制的情况下自主行走。 这项创新为新一代微型设备奠定了基础,这些设备可以跟踪细菌、嗅出化学物质、摧毁污染物、进行显微手术并清除动脉

混合微型机器人在生理环境中导航

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497467.shtm 科技日报北京3月30日电 (记者张梦然)以色列特拉维夫大学和以色列理工学院的研究人员合作开发了一种混合微型机器人,其大小相当于单个生物细胞(直径约10微米),可使用电和磁两种不同

受穿山甲启发的微型医学机器人

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503452.shtm德国科学家研发了一种受穿山甲启发的微型机器人,可用于在体内进行安全和微创的医疗。这一无系留软体机器人或许能够有朝一日通过变形,到达难以触及的体内区域——如胃内或小肠。相关研究6月20日

Science-Robotics:可用于癌症诊断治疗的磁性微游动机器人

  自然界中存在着丰富多样的生物自组织系统,表现出高度的群体智慧,可以解决个体无法胜任的复杂问题。比如分工协作的蚁群可构建复杂而精巧的蚁巢、搬运超重猎物,布阵捕食的鲱鱼群可轻松捕获非常警觉的桡足类动物等等。  受此启发,来自哈尔滨工业大学谢晖教授团队发表了题为“Reconfigurable magn

以细菌为基础的生物混合微型机器人

斯图加特-马克斯普朗克智能系统研究所身体智能系的一组科学家通过装备将机器人与生物学结合起来:细菌与人工成分构建生物杂交微型机器人。首先,如图1所示,研究小组将几个纳米脂质体附着在每个细菌上。在它们的外圈,这些球形载体包裹着一种材料(ICG,绿色粒子),这种材料在近红外光照射下就会融化。再往中间,在水

磁热联合驱动微型软体机器人研究取得进展

  近日,中国科学院沈阳自动化研究所机器人学国家重点实验室微纳米自动化课题组在磁热联合驱动的微型软体机器人研究中取得新进展。科研人员利用4D打印技术制备的软体机器人在近红外光和磁场的联合驱动下,展示了弯曲形变、夹取及搬运功能,在微结构搬运、药物控释等方面展现出重要的应用前景。相关研究成果发表在Com

最小、最轻、最快的仿昆虫微型机器人来了

原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516677.shtm

最小、最轻、最快的仿昆虫微型机器人来了

春夏之际的池塘水面上,总能看到长着6条大长腿的“大蚊子”趴在水面上,一受惊,它们就施展“水上漂”“凌波微步”等绝世神功,快速移动。这种“大蚊子”叫水黾,是一种常见的小型水生昆虫,它们在水面张力的支持下可以以每秒1米多的速度滑行。受这种昆虫启发,美国华盛顿州立大学的研究人员研发出了两款微型机器人——M

新希望!微型机器人或将奋战抗肿瘤前线

   近来,合成微纳米材料已经在生物医学应用方面取得了巨大的进步。然而,现有的微纳米平台在深部组织成像和体内运动控制方面仍然不够优秀。近日,加州理工学院的研究人员发表了关于光声计算机断层扫描(photoacoustic computed tomography,PACT)引导的体内肠道微型机器人的研究

美科研人员研发可发光的微型飞行机器人

  美国麻省理工学院(MIT)科研人员受到萤火虫的启发,研制了形似昆虫的飞行机器人,在飞行时可以发光,从而实现运动跟踪和通信。相关研究近日发表在《IEEE机器人和自动化通讯》(IEEE Robotics and Automation Letters)上。  这种微型飞行机器人“闪电虫”利用电致发光的

美科研人员研发可发光的微型飞行机器人

美国麻省理工学院(MIT)科研人员受到萤火虫的启发,研制了形似昆虫的飞行机器人,在飞行时可以发光,从而实现运动跟踪和通信。相关研究近日发表在《IEEE机器人和自动化通讯》(IEEE Robotics and Automation Letters)上。  这种微型飞行机器人“闪电虫”利用电致发光的软质

基于宽度学习的微型机器人智能轨迹追踪方法

  近日,中国科学院深圳先进技术研究院集成所智能仿生研究中心副研究员徐升和研究员徐天添研究团队合作,将宽度学习算法成功应用于微型机器人轨迹追踪控制中,将数据驱动的思想用于微型机器人控制器设计,由示教训练替换复杂调参,并推导训练算法参数约束以保障稳定性能,极大提升了微型机器人轨迹追踪的准确性及控制器的

哈佛大学展示可垂直飞行微型机器人

这是研制实验室对外展示的一段录像中的截图,显示一台微型飞行机器人正振翅执行垂向飞行测试,系统采用了闭合线路控制。   北京时间9月22日消息,最近美国的工程师们在向昆虫仿生学微型飞行机器人研制的方向上又迈出了关键性步骤,离完全自主飞行的目标又进了一步。日前他们首次对外界展示了一台采

科学家研制出新型微型软体攀爬机器人

本报北京12月4日电(记者邓晖)体长从6毫米到90毫米、质量从0.2克到3克不等,能在不同形貌,如圆柱面内外侧、波浪面、楔形面、球面等表面攀爬,还能在两个不同表面之间过渡——近日,清华大学航天航空学院张一慧教授课题组创新研制出一种可适应不同形貌墙面的微型软体攀爬机器人。 具备攀爬能力的微型机器人由于

神经元损伤修复搭“桥”的微型生物机器人

  由患者自身细胞构建的“分子医生”能够筛查癌症、修复受损组织、清除血管斑块,是研究人员对未来医学的构想。而美国塔夫茨大学发育生物学家Michael Levin致力将这种构想变为现实。  4年前,Levin和同事利用非洲爪蛙制造了一个“活体机器人”。他们将非洲爪蛙的胚胎心脏和皮肤细胞缝合在一起,形成