蛋白质合成实验
实验步骤材料无菌细胞培养,如 1X104~ 1X106 个细胞,24 孔板3H-亮氨酸。无血淸培养基中 2 MBq /ml (~50uCi/ml) (特异活性并不重要,因为它将由培养基中的亮氨酸浓度决定)非无菌SLS 或 SDS,1% (35m mol/L ) 溶于 0 .3 mol/L NaOH三氯醋酸(TCA)液闪瓶Eppendorf 管闪烁液,最小含水为 10%操作步骤1. 细胞生长至所需密度。2. 从孵箱中取出培养板,加人预温的溶于培养液或 BSS 中的放射性同位素,稀释度为 1:10 (如 l00ul/ml/孔)。3. 尽快地将细胞放回孵箱。4 . 继续培养 4~24 h。提示: 不同的蛋白质更新率不尽相同。本操作程序并不针对任何特定的一种蛋白质,而可用于快速生长细胞中的总蛋白。当第一次用来测定一个细胞系的蛋白质合成时,要核实合成率在所选的孵育时间内是否呈线性。如果氨基酸池比饱和时低,可发生延迟。5......阅读全文
蛋白质合成实验
实验步骤 材料 无菌 细胞培养,如 1X104~ 1X106 个细胞,24 孔板 3H-亮氨酸。无血淸培养基中 2 MBq /ml (~50uCi/ml) (特异活性并不重要
蛋白质合成实验
实验步骤 材料无菌细胞培养,如 1X104~ 1X106 个细胞,24 孔板3H-亮氨酸。无血淸培养基中 2 MBq /ml (~50uCi/ml) (特异活性并不重要,因为它将由培养基中的亮氨酸浓度决定)非无菌SLS 或 SDS,1% (35m mol/L ) 溶于 0 .3 mol/L NaOH
蛋白质合成实验
实验步骤 材料 无菌 细胞培养,如 1X104~ 1X106 个细胞,24 孔板 3H-亮氨酸。无血淸培养基中 2 MBq /ml (~50uCi/ml) (特异活性并不重要,因为它将由培养基中的亮氨酸浓度决定) 非无菌 SLS 或
蛋白质合成实验
实验步骤材料无菌细胞培养,如 1X104~ 1X106 个细胞,24 孔板3H-亮氨酸。无血淸培养基中 2 MBq /ml (~50uCi/ml) (特异活性并不重要,因为它将由培养基中的亮氨酸浓度决定)非无菌SLS 或 SDS,1% (35m mol/L ) 溶于 0 .3 mol/L NaOH三
蛋白质的生物合成标记实验
甲硫氨酸短时间标记悬液中的细胞 甲硫氨酸短时间标记贴壁培养细胞 甲硫氨酸对细胞进行脉冲追踪标记 实验材料 蛋白质
蛋白质的生物合成标记实验
实验材料 蛋白质试剂、试剂盒 甲硫氨酸PBS仪器、耗材 培养箱离心管实验步骤 1. 培养悬浮细胞至对数增长期,室温300 g 离心5 min。回收107~108细胞。 2. 每2×107细胞用约10 ml 37℃的短时间标记培养基在圆锥型试管中洗涤,于室温300 g 离心5 min 回收细胞,小
蛋白质的生物合成标记实验
甲硫氨酸短时间标记悬液中的细胞 甲硫氨酸短时间标记贴壁培养细胞 甲硫氨酸对细胞进行脉冲追踪标记 实验材料 蛋白质
蛋白质的生物合成标记实验(三)
实验材料细胞试剂、试剂盒甲硫氨酸PBS仪器、耗材离心机培养箱实验步骤1. 准备和用[35S]甲硫氨酸标记细胞,用0.2~1 mCi/ml 的[35S]甲疏氨酸脉冲标记细胞5~30 min。 2. 脉冲标记后,除去[35S]甲硫氨酸培养基,用10 ml 于37℃追加培养基冼细胞1次,加入10 ml
蛋白质的生物合成标记实验(二)
实验材料细胞试剂、试剂盒PBS甲硫氨酸仪器、耗材培养箱离心机实验步骤1. 在100 mm 直径的培养皿上培养贴壁细胞(0.5~2×107)至70%~90%汇片,吸去培养液,用10 ml 于37℃短时间标记培养基轻轻搖晃冼两次细胞。2. 加入5 ml 于37℃短时间标记培养基,在5%CO2的加湿培
蛋白质的生物合成标记实验(一)
甲硫氨酸短时间标记悬液中的细胞生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。由于mRNA上的遗传信息是以密码(见遗传密码)形式存在的,只有合成为蛋白质才能表达出生物性状,因此将蛋白质生物合成比拟为转译或翻译。实验材料蛋白质试剂、试剂盒甲硫氨酸PBS
蛋白质合成的合成场所介绍
核糖体就像一个小的可移动的工厂,沿着mRNA这一模板,不断向前迅速合成肽链。氨基酰tRNA以一种极大的速率进入核糖体,将氨基酸转到肽链上,又从另外的位置被排出核糖体,延伸因子也不断地和核糖体结合和解离。核糖体和附加因子一道为蛋白质合成的每一步骤提供了活性区域。
蛋白质合成的过程
原核生物与真核生物的蛋白质合成过程中有很多的区别,真核生物此过程更复杂,下面着重介绍原核生物蛋白质合成的过程,并指出真核生物与其不同之处。蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。
蛋白质合成的概述
蛋白质合成是生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。由于mRNA上的遗传信息是以密码形式存在的,只有合成为蛋白质才能表达出生物性状,因此将蛋白质生物合成比拟为转译或翻译。蛋白质生物合成包括氨基酸的活化及其与专一转移核糖核酸(tRNA)的连
蛋白质合成的概念
蛋白质合成是指生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。蛋白质生物合成亦称为翻译(Translation),即把mRNA分子中碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序过程。
蛋白质生物合成过程
1.氨基酸的活化与搬运:氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨基酰tRNA合成酶催化完成。反应完成后,特异的tRNA3’端CCA上的2’或3’位自由羟基与相应的活化氨基酸以酯键相连接,形成氨基酰tRNA。 2.活化氨基酸的缩合——核蛋白体循环:活化氨基酸在核蛋白体上反复翻译mRNA
蛋白质的生物合成
生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。由于mRNA上的遗传信息是以密码(见遗传密码)形式存在的,只有合成为蛋白质才能表达出生物性状,因此将蛋白质生物合成比拟为转译或翻译。所以,RNA是蛋白质合成的直接模板。
什么是蛋白质合成?
蛋白质合成是指生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。 蛋白质合成是基因表达的第二步,也是产生基因产物蛋白质的最后阶段。 蛋白质合成是生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。由
蛋白质合成的过程
1.氨基酸的活化与搬运:氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨基酰tRNA合成酶催化完成。反应完成后,特异的tRNA3’端CCA上的2’或3’位自由羟基与相应的活化氨基酸以酯键相连接,形成氨基酰tRNA。 2.活化氨基酸的缩合——核蛋白体循环:活化氨基酸在核蛋白体上反复翻译mRNA
蛋白质合成的特点
真核生物翻译起始的特点: 1.真核起始甲硫氨酸不需甲酰化。 2.真核mRNA没有S-D序列,但5'端帽子结构与其在核蛋白体就位相关。帽结合蛋白(CBP)可与mRNA帽子结合,促进mRNA与小亚基结合。 3.肽链的延长 :延长阶段为不断循环进行的过程,也称核蛋白体循环。分为进位、成肽
克隆化基因体外合成蛋白质分析DNA蛋白质相互作用实验
体外合成的蛋白质对于测定一个克隆的基因是否编码一个特异的DNA结合蛋白, 以及分析DNA-蛋白质相互作用都是极为有用的。为了检测DNA的结合能力,可将标 记的蛋白质与特异的DNA片段共温育,用非变性丙烯酰胺凝胶电泳将蛋白质-DNA复 合物与游离的蛋白质分离开来。来源:《精编分子生物学实验指南》第五版
简述蛋白质合成的调控
生物体内蛋白质合成的速度,主要在转录水平上,其次在翻译过程中进行调节控制。它受性别、激素、细胞周期、生长发育、健康状况和生存环境等多种因素及参与蛋白质合成的众多的生化物质变化的影响。由于原核生物的翻译与转录通常是偶联在一起的,且其mRNA的寿命短,因而蛋白质合成的速度主要由转录的速度决定。弱化作
真核细胞蛋白质合成过程
真核细胞中,核糖体进行蛋白质合成时,既可以游离在细胞质中,称为游离核糖体(freeribosome)。也可以附着在内质网的表面,称为膜旁核糖体或附着核糖体。参与构成RER,称为固着核糖体或膜旁核糖体,是以大亚基圆锥形部与膜接着游离核糖体(freeribosome)。分布在线粒体中的核糖体,比一般核糖
蛋白质生物合成的调控
生物体内蛋白质合成的速度,主要在转录水平上,其次在翻译过程中进行调节控制。它受性别、激素、细胞周期、生长发育、健康状况和生存环境等多种因素及参与蛋白质合成的众多的生化物质变化的影响。由于原核生物的翻译与转录通常是偶联在一起的,且其mRNA的寿命短,因而蛋白质合成的速度主要由转录的速度决定。弱化作用是
蛋白质生物合成的调控
生物体内蛋白质合成的速度,主要在转录水平上,其次在翻译过程中进行调节控制。它受性别、激素、细胞周期、生长发育、健康状况和生存环境等多种因素及参与蛋白质合成的众多的生化物质变化的影响。由于原核生物的翻译与转录通常是偶联在一起的,且其mRNA的寿命短,因而蛋白质合成的速度主要由转录的速度决定。弱化作用是
动物能合成蛋白质吗
动物能合成蛋白质,但是组成蛋白质的氨基酸并不是全都能合成而必须来自于食物。这部分不能自己合成的就叫“必须氨基酸”
蛋白质合成的过程简介
1.氨基酸的活化与搬运:氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨基酰tRNA合成酶催化完成。反应完成后,特异的tRNA3’端CCA上的2’或3’位自由羟基与相应的活化氨基酸以酯键相连接,形成氨基酰tRNA。 2.活化氨基酸的缩合——核蛋白体循环:活化氨基酸在核蛋白体上反复翻译mRNA
蛋白质生物合成翻译模板
不同mRNA序列的分子大小和碱基排列顺序各不相同,但都具有5ˊ-端非翻译区、开放阅读框架区、和3ˊ-端非翻译区;真核生物的mRNA的5ˊ-端还有帽子结构、3ˊ-端有长度不一的多聚腺苷酸(polyA)尾。帽子结构能与帽子结合,在翻译时参与mRNA在核糖体上的定位结合,启动蛋白质生物的合成;帽子结构和p
蓖麻毒素抑制蛋白质合成
蓖麻毒素具有强烈的细胞毒性,属于蛋白合成抑制剂或核糖体失活剂,这也是在构建免疫毒素时,应用到蓖麻毒素的主要原因。 合成的机理在20世纪70年代已经明确。首先,毒素依靠B链上的半乳糖结合位点与细胞表面含末端半乳糖残基的受体结合,促进整个毒素分子以内陷方式进入细胞,形成细胞内囊,毒素从细胞内囊中进
基因合成实验
基因合成可应用于:(1)代谢通路合成;(2)基因网络构建;(3)疫苗设计。难度系数 2.0共2人点评打分点评实验,有机会获丁当奖励 +收藏 8人收藏基因合成实验标签: 基因 合成基因合成可应用于:(1)代谢通路合成;(2)基因网络构建;(3)疫苗设计。基因合成实验实验方法原理基因合成是指在体外人工
基因合成实验
基因合成可应用于:(1)代谢通路合成;(2)基因网络构建;(3)疫苗设计。实验方法原理基因合成是指在体外人工合成双链DNA分子的技术,与寡核苷酸合成有所不同:寡核苷酸是单链的,所能合成的最长片段仅为100nt左右,而基因合成则为双链DNA分子合成,所能合成的长度范围50bp-12 kb。基因合成是用