研究发现突触稳态调控的结构基础
突触后谷氨酸受体减少会产生逆向信号诱导突触前神经递质释放的增加以维持突触传递功能,这个调控过程称为突触稳态。突触后受体如何跨突触逆向影响突触前结构和功能是神经生物学研究的核心科学问题。突触结构和功能的紊乱与精神分裂症、自闭症及智力发育迟缓等多种神经精神疾病密切相关,解析突触后谷氨酸受体如何调控突触前结构和功能的变化可以为相关疾病的治疗提供新思路。目前关于突触稳态调控的结构基础了解的很少。中国科学院遗传与发育生物学研究所张永清研究组与生物影像平台中心的降雨强研究组密切合作,以果蝇神经肌肉突触为模式体系,通过超分辨共聚焦显微成像和电子显微成像技术解析了突触后受体减少诱导突触前稳态过程的结构变化。 在野生型果蝇中,神经肌肉突触活性区含有一个电子致密结构称为T-bar。细胞骨架蛋白Brp是哺乳动物CAST/ERC家族成员ELKS蛋白在果蝇中的同源蛋白。它是T-bar结构的关键组成成分,Brp缺失会导致活性区组装缺陷。超分辨显微成像......阅读全文
地西泮对创伤性脑损伤大鼠海马谷氨酸能突触传递的影响
据EurekAlert!:地西泮具有抗焦虑、镇静、催眠、抗惊厥、抗癫痫及中枢性肌肉松驰作用,对癫痫持续状态极有效,是控制癫痫持续状态的首选药之一。 中国首都医科大学宣武医院宋为群博士所带领的团队应用膜片钳技术检测发现,地西泮治疗可显著增加颅脑损伤大鼠海马神经元输入-输出关系曲线的斜率;而在γ-
研究发现谷氨酸受体信号肽在神经突触传递中的新功能
人的大脑中约含有100亿个神经元,它们通过神经突触这一个独特而又基本的结构实现信息传递交流和整合。突触前神经元释放的神经递质,进入突触间隙之后会与定位于突触后膜的神经递质受体相结合,引起突触后神经元活性变化,从而实现神经信息的跨细胞传递。这一过程的调控异常被认为是神经精神疾病发生的重要原因之一,
谷氨酸脱氢酶的检查后注意事项
1、抽血后,需在针孔处进行局部按压3-5分钟,进行止血。注意:不要揉,以免造成皮下血肿。 2、按压时间应充分。各人的凝血时间有差异,有的人需要稍长的时间方可凝血。所以当皮肤表层看似未出血就马上停止压迫,可能会因未完全止血,而使血液渗至皮下造成青淤。因此按压时间长些,才能完全止血。如有出血倾向,
重要发现:突触后受体聚集、神经肌肉接头形成的新机制
我们日常生活中的每一个活动如走路、吃饭、喝水、呼吸甚至静坐都离不开肌肉收缩。控制肌肉离不开人体里一个叫神经肌肉接头的结构,这是一个运动神经元与骨骼肌纤维之间的链接(神经科学上叫突触)。神经肌肉接头是一个化学突触,运动神经元膜稍释放乙酰胆碱,后者激活肌肉细胞膜上的乙酰胆碱受体产生电位变化,这样就把
陈宜张著作《突触》:研究“突触”的一块基石
读陈宜张院士沉甸甸的学术著作《突触》,我们深切感受到的是一位老科学家在科学征程上执着追求的赤诚。陈宜张已87岁,成就卓著,仍没有懈怠,辛勤耕耘,在独立出版54万字的《神经科学的历史发展与思考》五年之后,又以一人之力推出大作《突触》。其为神经科学传道授业的热忱,不能不让我们这些学界晚辈为之汗颜。
关于突触前膜的突触传递的作用介绍
突触传递是神经元之间或神经元与效应器之间的信息传递。突触是神经元之间或神经元与其他细胞相接触的部位,是一种进行传递信息的特殊连接装置。突触由突触前膜、突触间隙与突触后膜三部分组成。轴突末梢形成许多球形的突触小体,突触前膜是突触小体的膜,突触后膜是突触后神经元与突触前膜相对应部分的膜。两膜之间存在
瘦素可促进突触形成或突触发生
瘦素这种激素以调节食欲而闻名,如今证据表面,它似乎会影响神经元的发育——这一发现可能有助于解释诸如自闭症等与功能失调的突触形成有关的疾病。 瘦素是一种由成人体内脂肪细胞释放的激素,研究人员主要关注它是如何控制食欲的。在5月18日发表在《科学信号》(Science Signaling)杂志上的一
研究发现突触稳态调控的结构基础
突触后谷氨酸受体减少会产生逆向信号诱导突触前神经递质释放的增加以维持突触传递功能,这个调控过程称为突触稳态。突触后受体如何跨突触逆向影响突触前结构和功能是神经生物学研究的核心科学问题。突触结构和功能的紊乱与精神分裂症、自闭症及智力发育迟缓等多种神经精神疾病密切相关,解析突触后谷氨酸受体如何调控突
我国学者利用显微成像证明Nlg1参与调控Brp多环结构形成
突触后谷氨酸受体减少会产生逆向信号诱导突触前神经递质释放的增加以维持突触传递功能,这个调控过程称为突触稳态。突触后受体如何跨突触逆向影响突触前结构和功能是神经生物学研究的核心科学问题。突触结构和功能的紊乱与精神分裂症、自闭症及智力发育迟缓等多种神经精神疾病密切相关,解析突触后谷氨酸受体如何调控突
不同谷氨酸受体亚型配比的调控机制研究获进展
离子型谷氨酸受体(GluRs)是异源四聚体的阳离子通道,可介导中枢神经系统中绝大部分兴奋性神经递质传导。不同类型的受体根据其亚基组合的区别又可被划分为不同的受体亚型。突触受体亚型组成的不同介导了突触功能和可塑性。例如,GluA1(一种受体亚基)是突触长时程增强(LTP)所必须的,而GluA2则参
什么是免疫突触?
T细胞突触即免疫突触。成熟T细胞在与APC识别结合的过程中,多种跨膜分子聚集在富含神经鞘磷脂和胆固醇的“筏”状结构上并且互相靠拢成簇,形成细胞间互相结合的部位,其中心区为TCR和抗原肽-MHC分子,以及T细胞膜辅助分子和相应配体,周围环形分布着大量的其它细胞粘附分子。
我国研究发现突触稳态调控的结构基础
突触后谷氨酸受体减少会产生逆向信号诱导突触前神经递质释放的增加以维持突触传递功能,这个调控过程称为突触稳态。突触后受体如何跨突触逆向影响突触前结构和功能是神经生物学研究的核心科学问题。突触结构和功能的紊乱与精神分裂症、自闭症及智力发育迟缓等多种神经精神疾病密切相关,解析突触后谷氨酸受体如何调控突
Nature子刊发现谷氨酸受体神经细胞内转运的新调控机制
人的大脑是由约100亿个神经元(即神经细胞)组成,这些神经元通过突触这种特化细胞间连接结构进行信息交换。突触前神经元通过突触前膜释放神经递质,结合于突触后膜的神经递质受体,引起突触后神经元的电生理变化,从而实现神经信号的跨细胞传递。在大脑内,兴奋性的信号传递主要是由突触前膜释放的谷氨酸(神经递质
突触的含义以及横过突触空隙传递神经讯号的步骤
突触(synapse)是神经纤维间的连繫。所有的神经纤维都是以轴突末稍(dendrite)连到其它神经纤维的树突末稍(axonbrush)。而且在轴突末稍和树突末稍间留有一个空隙,称为突触空隙(synspticcleft)。如下图所示。 横过突触空隙传递神经讯号的步骤: (1)神经讯号到达轴突末稍
最新研究发现突触脉冲的强度与突触大小直接相关
神经细胞通过突触彼此交流。近日,发表在《Nature》上的一项研究中,来自苏黎世大学神经信息学研究所和苏黎世联邦理工学院的Kevan Martin实验室的研究团队发现,这些联系似乎比以前认为的要强大得多。突触越大,传递的信号就越强。这些发现将有助于更好地了解大脑功能以及神经系统疾病是如何产生的。
Inscopix在研究焦虑细胞的受体靶点的应用(二)
2. 应激暴露增强了BLA-plPFC互反电路中的兴奋性信号数据表明,增强的BLA-plPFC环路活性可能是环境压力转化为焦虑样行为的相关底物。为了研究在BLA-plPFC电路中受到压力诱导的突触适应性,使用了顺行chr2辅助投射靶向、逆行追踪方法和体外电生理学相结合的方法(图2A和2B)。
红藻氨酸有哪些特点?
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性
红藻氨酸的主要功能特点
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作
红藻氨酸的特点
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作
快速抗抑郁治疗的新机制
如果吃一颗小药丸就能让心情马上好起来,这无疑是抑郁症患者的福音。近日,北京大学第六医院院长陆林教授介绍了课题组发表在英国《分子精神病学》杂志的最新研究成果,论文题目是“死亡相关蛋白激酶1与谷氨酸受体2B亚基的解偶联能产生快速抗抑郁样效应”。该研究创新性地提出了基于谷氨酸受体的快速抗抑郁作用新理论
华人博士PNAS神经学新发现
自美国Jackson实验室的副教授张忠伟(Zhong-wei Zhang,生物通音译)博士领导研究小组,在新论文中提供了直接证据表明,一种特异的神经递质受体对于新生哺乳动物大脑突触修剪(pruning synapse)至关重要。研究成果发表在《美国科学院院刊》(PNAS)上。
研究揭示突触可塑性长时程增强的突触后分子机制
中枢神经系统是脊椎动物调控最复杂、最严谨的器官之一,控制着感觉感知、情绪调节和机体维持等基本神经活动,以及思维、认知和意识等高级神经活动。大脑最重要的特征之一就是能够存储大量的信息,即学习和记忆能力,在阿兹海默病等神经精神疾病的患者中,学习和记忆能力的异常是重要的临床表征之一。神经元之间相互形成
概述氨基酸类递质
在脑脊髓内谷氨酸含量很多,分布很广,但相对来看,大脑半球和脊髓背侧部分含量较高。用电生物微电泳法将谷氨酸作用于皮层神经元和脊髓运动神经地,可引致突触后膜出现类似兴奋性突触后电位的反应,并可导致神经元放电。由此设想,谷氨酸可能是感觉传入神经纤维(粗纤维类)和大脑皮层内的兴奋型递质。 用电生理微电
突触信号传送的定义
中文名称突触信号传送英文名称synaptic signaling定 义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
人工突触可自主学习
来自法国国家科学研究中心及其他研究组织的研究人员创造了一种能够自主学习的人工突触。他们还对该设备进行建模,这对于开发更复杂的脑回路至关重要。该研究4月3日在《自然—通讯》杂志上发表。 生物模拟学的目标之一是从大脑的功能中获得灵感,以便设计越来越多的智能机器。这一原则已经以完成特定任务的算法形式
什么是T细胞突触-?
T细胞突触是APC(抗原提呈细胞)和T细胞相互作用的过程中,在细胞与细胞接触部位形成了一个特殊的结构,称为T细胞突触(T cell synapse),又称为免疫突触(immunological synapse)。
突触信号传送的定义
中文名称突触信号传送英文名称synaptic signaling定 义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
突触信号传送的概念
中文名称突触信号传送英文名称synaptic signaling定 义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
Science:重大突破!一类新型抑制剂可高效阻止神经变性
在一项新的研究中,来自德国海德堡大学的研究人员发现了一种位于神经连接(即突触)处的通常会激活一种保护性遗传程序的特殊受体当位于突触外时如何导致神经细胞死亡。这种在神经退行性过程方面的重要发现使得他们对治疗药物产生了全新的认识。在对小鼠模型的实验中,他们发现了一类新的保护神经细胞的高效抑制剂。正如
红藻氨酸受体
红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA