在30分钟内创建你的深度学习服务器(二)
设置Jupyter Notebook但是,我们仍然需要使用一些东西才能充分使用计算机,其中之一就是Jupyter Notebook。要在计算机上设置Jupyter Notebook,我建议使用TMUX和隧道。让我们逐步设置Jupyter Notebook。1.使用TMUX运行Jupyter Notebook我们将首先使用TMUX在实例上运行Jupyter Notebook。我们使用它是为了即使终端连接丢失,我们的笔记本电脑仍然可以运行。为此,你将需要使用以下命令创建一个新的TMUX会话:tmux new -s StreamSession完成后,你将看到一个新屏幕,底部带有绿色边框。你可以使用jupyter notebook命令在此计算机上启动Jupyter Notebook 。你将看到类似以下内容:复制登录URL将是有益的,这样以后尝试登录到jupyter notebook时,我们将能够获取令牌。......阅读全文
在30分钟内创建你的深度学习服务器(二)
设置Jupyter Notebook但是,我们仍然需要使用一些东西才能充分使用计算机,其中之一就是Jupyter Notebook。要在计算机上设置Jupyter Notebook,我建议使用TMUX和隧道。让我们逐步设置Jupyter Notebook。1.使用TMUX运行Jupy
在30分钟内创建你的深度学习服务器(一)
每当我开始一个新的项目时,我发现自己一次又一次地创建一个深度学习机器。从安装Anaconda开始,然后为Pytorch和Tensorflow创建不同的环境,这样它们就不会相互干扰,而在这中间,你不可避免地会搞砸,然后得从头开始。这种情况经常发生。这不仅是对时间的巨大浪费,也是令人恼火的。通过
深度学习在雷达中的研究综述(二)
其中, J(w,b) 为对应自编码器代价函数, β 为控制系数性惩罚因子权重。2.3 DBN基本原理DBN是一个概率生成模型,其建立一个观测数据与标签之间的联合分布。并且DBN由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)组成,典型的DBN结构如图4所示。
TPU将成深度学习的未来?(二)
能够进行数据推理的第二代TPU第一代的TPU只能用于深度学习的第一阶段,而新版则能让神经网络对数据做出推论。谷歌大脑研究团队主管Jeff Dean表示:“我预计我们将更多的使用这些TPU来进行人工智能培训,让我们的实验周期变得更加快速。”“在设计第一代TPU产品的时候,我们已经建立了一个相对
深度学习在雷达中的研究综述(一)
深度学习在雷达中的研究综述王俊, 郑彤, 雷鹏, 魏少明 摘要:雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过
深度学习在雷达中的研究综述(三)
3.2 基于SAE的SAR图像处理研究SAE的特点是可自动从无标记数据中学习特征,并且给出比原始数据更好的特征描述,进一步通过该学习到的特征得到更好的分类效果。有学者将其应用于地物目标分类、舰船分类以及城市变化检测等场景。并且通过SAE对SAR图像进行分析,其与传统方法相比,展现SAE具有自动学习高
人脸检测发展:从VJ到深度学习(二)
选好了窗口,我们开始对窗口中的图像区域进行观察,目的是收集证据——真相只有一个,我们要依靠证据来挖掘真相!在处理图像的过程中,这个收集证据的环节我们称之为特征提取,特征就是我们对图像内容的描述。由于机器看到的只是一堆数值,能够处理的也只有数值,因此对于图像所提取的特征具体表示出来就是一个
未来,深度学习帮助人类决策你应该吃什么药
韩国研究团队开发了一款名为DeepDDI的计算框架,它可以准确地预测86种类型的药物-药物(DDIs)和药物-食物(DFIs)相互作用,并输出人类可读句子,帮助人类理解不良药物事件(ADEs)。 药物之间和药物与食物之间经常会触发意外药理作用(就是我们所谓的“食物相克”),但是,其因果机制在很
相比GPU和GPP:FPGA才是深度学习的未来?(二)
除了编译时间外,吸引偏好上层编程语言的研究人员和应用科学家来开发FPGA的问题尤为艰难。虽然能流利使用一种软件语言常常意味着可以轻松地学习另一种软件语言,但对于硬件语言翻译技能来说却非如此。针对FPGA最常用的语言是Verilog和VHDL,两者均为硬件描述语言(HDL)。这些语言和传统
深度学习在基因表达谱分析上取得重要进展
近日,一项刊登在国际杂志Bioinformatics上的研究论文中,来自加州大学尔湾分校和博德研究所的研究人员通过深度学习算法进行大规模基因表达预测,并在预测精度上获得了显着提升。 全基因组表达谱分析被广泛应用于描述细胞在不同生理病理条件下的活动状态,例如不同的癌组织细胞在各种给药条件下会产生
TPU将成深度学习的未来?(一)
在Google I/O 2016的主题演讲进入尾声时,谷歌的CEO皮采提到了一项他们这段时间在AI和机器学习上取得的成果,一款叫做Tensor Processing Unit(张量处理单元)的处理器,简称TPU。在这个月看来,第一代的TPU处理器已经过时。在昨天凌晨举行的谷歌I/O 2017
深度学习算法“解密”脑活动
英国《自然·医学》杂志9月25日在线发表的一项研究,报告了一种可以分析四肢瘫痪患者大脑活动的深度学习算法。该算法已被用于向患者的前臂肌肉传递电刺激,从而恢复瘫痪肢体的功能性运动。 慢性瘫痪患者的生活质量可以通过脑机接口加以改善。脑机接口可以将控制运动的中枢神经系统回路和辅助设备(例如计算机光标
AI侦探敲碎深度学习黑箱
研究人员创建了能填补照片空白的神经网络,以鉴别人工智能瑕疵。 Jason Yosinski坐在美国加州旧金山的一个小型玻璃办公室内,陷入了对人工智能的沉思。作为优步公司的研究科学家,Yosinski正为在笔记本电脑上运行的人工智能(AI)进行“脑外科手术”。 很多AI将改变人类现代生活,例如
研究团队在深度学习泛化能力研究中获进展
近日,中国科学院沈阳自动化研究所机器人学国家重点实验室在深度学习泛化能力研究中取得进展,相关研究成果Depth selection for deep ReLU nets in feature extraction and generalization为题,发表在IEEE Transactions
Nature-Methods-|-深度学习:二维图片到三维的变换
荧光显微镜在生命科学等学科中有重要作用。通过激发样本的特异性荧光标记,荧光显微镜可以准确揭示生物内部特定的组织,结构和活动。 2019年11月4日,来自UCLA的Aydogan Ozcan教授科研团队在Nature Methods上发表题为“Three-dimensional virtual
机器学习模型创建定制气味和香水
目前,人们仅根据气味剂的物理化学特征来预测嗅觉印象。但是,该方法无法预测传感数据,而传感数据对于产生气味是必不可少的。为了解决这个问题,日本东京工业大学研究人员采用了逆向思维的创新策略,不是根据分子数据预测气味,而是根据气味印象预测分子特征。这是使用标准质谱数据和机器学习模型实现的。研究成果发表在最
深度学习算法准确追踪动物运动
根据英国《自然·神经科学》杂志8月21日在线发表的一项研究,美国哈佛大学团队运用一种新型深度学习算法,成功追踪动物运动及行为,其准确度可达到人工水平,而且无需采用追踪标记物或进行费时的手动分析。专家认为,这一成果打开了海量的数据来源之门。 准确追踪行为发生期间的身体运动部位是运动科学的一项重要
深度学习协助预测厄尔尼诺-|《自然》论文
《自然》发表的一篇论文Deep learning for multi-year ENSO forecasts报道了一种可以提前一年半预测厄尔尼诺事件的深度学习方法,克服了该领域内长期存在的一项挑战。用来预测厄尔尼诺现象的CNN预测系统来源: Ham et al. 厄尔尼诺事件发生于太平洋东部和
基于深度学习的化纤外观缺陷语义分割
摘要: 针对化纤外观缺陷检测使用基于深度学习的语义分割方法,总结了自2014年以来基于深度学习的典型语义分割方法,并在此基础上应用到化纤外观检测项目上,取得了不错的效果。 01 化纤外观缺陷检测背景 化纤作为纺织制造的原料,由化纤生产企业进入下游纺织企业前会收卷形成丝饼,但在丝饼
新光学芯片可实现高效“深度学习”
美国麻省理工学院(MIT)科学家在12日出版的《自然·光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。 “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中
人工智能进入“深度学习+”阶段
虽然从底层技术看,ChatGPT并不算创新,但其社会影响远远超出了预期。这款由美国人工智能公司OpenAI开发的聊天机器人,2022年11月推出后火遍全球,成为史上增长最快的消费者应用程序。 让机器和真人自由对话,一直是人工智能领域的重要目标之一。ChatGPT的爆火背后,其实是深度学习技术的
新光学芯片可实现高效“深度学习”
美国麻省理工学院(MIT)科学家在12日出版的《自然·光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。 “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中
深度学习复兴:向人工智能迈进
它是未来的一部分,我们才刚刚开始。图片来源:BRUCE ROLFF 3年前,美国加利福尼亚州山景城神秘的谷歌X实验室的研究人员从YouTube视频中提取了1000万个静态图像,并将其输入“谷歌大脑”——由1000台计算机构成的网络,从而试图像一个蹒跚学步的孩子一样吸收这个世界的信息。经过3
基于深度学习的时间序列预测研究获进展
时间序列预测是大规模数据无损压缩和极端天气预报等领域的核心技术。随着应用场景多样化和数据复杂性提升,现有模型在异构数据的统一表达、长序列结构依赖建模、极端天气波动捕捉等方面存在挑战。中国科学院计算机网络信息中心人工智能团队围绕上述挑战开展研究,提出一系列创新算法与模型,并在实际系统部署应用。
深度学习可识别显微照片中的细菌
美国华盛顿大学研究人员开发出一种深度学习软件Omnipose,其能帮助解决在显微镜图像中识别各种微小细菌的挑战。研究结果发表在17日的《自然·方法学》杂志上。 研究人员发现,在大型细菌图像数据库上训练的Omnipose在表征和量化混合微生物培养物中的无数细菌方面表现良好,并消除了其前身可能出现的
深度学习模型成功识别胚胎发育过程
英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。
人脸检测发展:从VJ到深度学习(六)
还有一种比较典型的结构是树形的级联结构,从形状上来看其和金字塔式的级联结构是一样的,也是从上往下分类器的数目逐层增多,区别就在于树形的级联结构中没有同一层分类器之间的横向连接,只有相邻层分类器之间的纵向连接,即一个窗口在同一层上不会由多个分类器进行分类,而会直接被送往下一层或者被排除。树
深度学习框架可预测锂电池寿命
近日,华东理工大学机械与动力工程学院、先进电池系统与安全重点实验室教授栾伟玲课题组与国家级高层次人才、华东理工大学讲席教授陈浩峰合作,在全球交通科学与技术领域期刊《交通电动化》发表论文,首次提出用于锂电池寿命预测相关的可解释性深度学习框架。 在锂电池寿命预测领域,建立全面的电池老化模型是项艰巨
人脸检测发展:从VJ到深度学习(四)
造成人脸检测速度慢的根本原因还在于输入规模过大,动辄需要处理几十上百万的窗口,如果这样的输入规模是不可避免的,那么有没有可能在处理的过程中尽快降低输入规模呢?如果能够通过粗略地观察快速排除掉大部分窗口,只剩下少部分窗口需要进行仔细的判别,则总体的时间开销也会极大地降低。从这样的想法出发,
人脸检测发展:从VJ到深度学习(三)
在确定了选择窗口的策略,设计好了提取特征的方式,并学习了一个针对人脸和非人脸窗口的分类器之后,我们就获得了构建一个人脸检测系统所需要的全部关键要素——还有一些小的环节相比之下没有那么重要,这里暂且略去。 由于采用滑动窗口的方式需要在不同大小的图像上的每一个位置进行人脸和非人脸窗口的判别