相比GPU和GPP:FPGA才是深度学习的未来?(二)

除了编译时间外,吸引偏好上层编程语言的研究人员和应用科学家来开发FPGA的问题尤为艰难。虽然能流利使用一种软件语言常常意味着可以轻松地学习另一种软件语言,但对于硬件语言翻译技能来说却非如此。针对FPGA最常用的语言是Verilog和VHDL,两者均为硬件描述语言(HDL)。这些语言和传统的软件语言之间的主要区别是,HDL只是单纯描述硬件,而例如C语言等软件语言则描述顺序指令,并无需了解硬件层面的执行细节。有效地描述硬件需要对数字化设计和电路的专业知识,尽管一些下层的实现决定可以留给自动合成工具去实现,但往往无法达到高效的设计。因此,研究人员和应用科学家倾向于选择软件设计,因其已经非常成熟,拥有大量抽象和便利的分类来提高程序员的效率。这些趋势使得FPGA领域目前更加青睐高度抽象化的设计工具。 3、FPGA深度学习研究里程碑: 1987VHDL成为IEEE标准 1992GANGLION成为首个FPGA神经网络硬件实......阅读全文

基于深度学习和超像素的大田小区水稻稻穗分割技术研究

不同生长阶段顶视相机角度下进行稻穗分割近日华中农业大学和华中科技大学联合作物表型研究团队在《Plant Methods》杂志上发表题为:Panicle-SEG: A robust image segmentation method for rice panicles in the field b

深度学习可识别显微照片中的细菌

美国华盛顿大学研究人员开发出一种深度学习软件Omnipose,其能帮助解决在显微镜图像中识别各种微小细菌的挑战。研究结果发表在17日的《自然·方法学》杂志上。 研究人员发现,在大型细菌图像数据库上训练的Omnipose在表征和量化混合微生物培养物中的无数细菌方面表现良好,并消除了其前身可能出现的

基于深度学习的时间序列预测研究获进展

  时间序列预测是大规模数据无损压缩和极端天气预报等领域的核心技术。随着应用场景多样化和数据复杂性提升,现有模型在异构数据的统一表达、长序列结构依赖建模、极端天气波动捕捉等方面存在挑战。中国科学院计算机网络信息中心人工智能团队围绕上述挑战开展研究,提出一系列创新算法与模型,并在实际系统部署应用。  

一文详解FPGA的设计与应用(二)

  2.面积换速度  在这种方法中面积的复制可以换取速度的提高。支持的速度越高,就意味着可以实现更高的产品性能。一些注重产品性能的应用领域可以采用并行处理技术,实现面积换速度。  第二 硬件可实现原则  FPGA设计通常会使用HDL语言,比如Verilog HDL或者VHDL.当采用HDL语

深度学习模型成功识别胚胎发育过程

  英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。 

人脸检测发展:从VJ到深度学习(六)

  还有一种比较典型的结构是树形的级联结构,从形状上来看其和金字塔式的级联结构是一样的,也是从上往下分类器的数目逐层增多,区别就在于树形的级联结构中没有同一层分类器之间的横向连接,只有相邻层分类器之间的纵向连接,即一个窗口在同一层上不会由多个分类器进行分类,而会直接被送往下一层或者被排除。树

深度学习“见顶”不等于AI寒冬

   尽管新的算法模型在推动AI向前发展,但并不意味着它们的前景可以预见,也不意味着深度学习“不可救药”。  在当前的第三次人工智能(AI)浪潮之中,深度学习算法被认为是迄今为止“最为重大的AI革命”。此说法或许有所夸大,但深度学习对这一轮AI的大爆发而言的确功不可没。然而,最近以来,关于深度学习算

深度学习框架可预测锂电池寿命

  近日,华东理工大学机械与动力工程学院、先进电池系统与安全重点实验室教授栾伟玲课题组与国家级高层次人才、华东理工大学讲席教授陈浩峰合作,在全球交通科学与技术领域期刊《交通电动化》发表论文,首次提出用于锂电池寿命预测相关的可解释性深度学习框架。  在锂电池寿命预测领域,建立全面的电池老化模型是项艰巨

人脸检测发展:从VJ到深度学习(四)

  造成人脸检测速度慢的根本原因还在于输入规模过大,动辄需要处理几十上百万的窗口,如果这样的输入规模是不可避免的,那么有没有可能在处理的过程中尽快降低输入规模呢?如果能够通过粗略地观察快速排除掉大部分窗口,只剩下少部分窗口需要进行仔细的判别,则总体的时间开销也会极大地降低。从这样的想法出发,

人脸检测发展:从VJ到深度学习(五)

  在过去十几年的探索过程中,涌现出的特征不胜枚举,这里只选取了部分比较有代表性和反映了人们探索思路的特征进行举例。这里所有列举的特征都有一个共同的特点:都由科研工作者根据自己的经验手工设计,这些特征的设计反映了人们对问题的理解和思考。虽然随着不断的改进,设计出的特征已经日臻完善,但直到现在

人脸检测发展:从VJ到深度学习(三)

  在确定了选择窗口的策略,设计好了提取特征的方式,并学习了一个针对人脸和非人脸窗口的分类器之后,我们就获得了构建一个人脸检测系统所需要的全部关键要素——还有一些小的环节相比之下没有那么重要,这里暂且略去。  由于采用滑动窗口的方式需要在不同大小的图像上的每一个位置进行人脸和非人脸窗口的判别

深度学习模型成功识别胚胎发育过程

英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。普利茅

深度学习算法-助力精准诊断结直肠肿瘤

  根据发表在《Life Science Alliance》杂志上的新研究,一种新的深度学习算法可以快速,准确地分析来自结直肠肿瘤的几种基因组数据,以进行更准确的分类,从而有助于改善诊断和相关的治疗选择。  大肠肿瘤的发展方式各不相同,需要接受的药物类型也不同,生存率也大不相同。通常,基于对基因表达

人脸检测发展:从VJ到深度学习(一)

这是一个看脸的世界!自拍,我们要艺术美颜;出门,我么要靓丽美妆。上班,我们要刷脸签到;回家,我们要看脸相亲。 当手机把你的脸变得美若天仙,当考勤机认出你的脸对你表示欢迎,你知道是什么魔力让冷冰冰的机器也变得温情脉脉,让呆呆的设备也变得善解人意吗?今天就让我们走近它们的内心,了解这些故事背后的一项

DeepDEP:深度学习构建肿瘤依赖性图谱

  大家好呀!今天给大家介绍一篇2021年发表在Science Advances上的文章。全基因组功能缺失筛查揭示了对癌细胞增殖十分重要的基因,称为肿瘤依赖性。然而将肿瘤依赖性关系与癌细胞的分子组成联系起来并进一步与肿瘤联系起来还是一个巨大的挑战。本研究,作者提出了DeepDEP,基于深度学习模型和

应对人工智能技术滥用,合作才是未来

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519198.shtm

未来:靠大学带动城市群,才是“翻身”之道

  未来:靠大学带动城市群,才是“翻身”之道  基于原建设部上报国务院的《全国城镇体系规划(2006-2020年)》中提出的“国家中心城市应该具有全国范围的中心性和一定区域的国际性”两大基本特征。  全国范围的中心性这一点,被提到了相当的高度。  “十三五”规划纲要提出,要在东部、中西部、东北等地区

2016值得关注的技术:基因组分析深度学习

  《Nature Methods》盘点2015年度技术,选出了最受关注的技术成果:单粒子低温电子显微镜(cryo-EM)技术。 除此之外,也整理出了2016年最值得关注的几项技术,分别为:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuc

深度学习模型筛查新药快千倍

  据美国麻省理工学院(MIT)官网12日报道,该校科学家开发出一款名为EquiBind的几何深度学习模型,其将类药物分子与蛋白配对的效率比现有最快的计算分子配对模型QuickVina2-W快1200倍。相关研究已经提交预印本服务器,并将提交给国际机器学习大会。  在药物开发之前,研究人员必须找到有

深度学习增强型智能镜可指导健身

意大利布雷西亚大学的研究人员最近开发了一种用于智能镜子的计算机视觉系统,可以提高家庭和健身房环境中健身训练的效率。在国际体育生物力学学会会议上公布的一篇论文中介绍了这一系统,该系统基于一种深度学习算法,经过训练可以识别健身视频中记录的人体姿势。 这款低成本计算机视觉系统利用骨架化算法,在带

深度学习增强里德堡多频微波识别

 图为机器学习解码结果。(a-c)为训练时间不同时,深度学习模型对传输信号的恢复结果 中国科大供图里德堡原子具有较大的电偶极矩,可以对微弱的电场产生很强的响应,因此作为一个非常有前景的微波测量体系,备受人们青睐。但基于里德堡原子的微波测量领域还存在很多科学问题亟待解决,多频率微波接收就是其中一项难题

新构建!深度脉冲神经网络学习框架“惊蜇”

中国科学院自动化所李国齐研究员和北京大学计算机学院田永鸿教授团队合作构建出深度脉冲神经网络学习框架“惊蜇”。它可以提供全栈式的脉冲深度学习解决方案,能够处理神经形态数据、构建深度脉冲神经网络、部署神经形态芯片。相关研究成果在线发表于《科学进展》杂志。图片来源:中国科学院自动化所脉冲神经网络被誉为第三

深度学习增强里德堡多频微波识别

 图为机器学习解码结果。(a-c)为训练时间不同时,深度学习模型对传输信号的恢复结果 中国科大供图 里德堡原子具有较大的电偶极矩,可以对微弱的电场产生很强的响应,因此作为一个非常有前景的微波测量体系,备受人们青睐。但基于里德堡原子的微波测量领域还存在

深度学习模型筛查新药快千倍

据美国麻省理工学院(MIT)官网12日报道,该校科学家开发出一款名为EquiBind的几何深度学习模型,其将类药物分子与蛋白配对的效率比现有最快的计算分子配对模型QuickVina2-W快1200倍。相关研究已经提交预印本服务器,并将提交给国际机器学习大会。 在药物开发之前,研究人员必须找到有潜

小鼠的高架T迷宫和八臂迷宫学习(二)

1.1.3 动物的觅食策略有心理学家提出:研究动物认知过程最重要的是“得到-停留(win-stay)”和“得到-转移(win-shift)”策略。两种策略在自然环境中都已发现,如夏威夷蜜藤鸟采用“得到-转移”策略;英国鸫鸟采用“得到-停留”策略,而且动物所处的生态环境、食源情况(集中与分散)直接影响

灵素系统——一种基于基因指纹和深度学习的药效预测系统

  2021年6月17日,北京大学国际癌症研究院谢正伟团队在Nature Biotechnology(IF=36.6)在线发表了题目为“Prediction of drug efficacy fromtranscriptional profiles with deep learning”的科研论文(

C语言之const和volatile究极学习(二)

输出结果:root@txp-virtual-machine:/home/txp# ./a.outSegmentation fault (core dumped)注解:这里会有段错误,错误出现在const+static修饰的j变量对其进行修改,还有const修饰的全局数组。5、const修饰函数参数和

GPU是如何工作的?与CPU、DSP有什么区别?(二)

  第三步,rasterisation。因为电脑的屏幕是由一个又一个的像素组成,因此,需要将一条连续的直线,使用绘图的演算法,以方格绘出该直线。图形也是以此方式,先标出边线,再用方格填满整个平面。  第四步,fragment shader。将格点化后的图形着上颜色。所需着上的颜色也是于输

布鲁克:利用CCS检测和深度学习研究4D蛋白质组学

  近日,Matthias Mann教授团队和Fabian Theis教授组*共同在《Nature Communication》上发表开创性成果,标题为“Deep learning the collisional cross sections of the peptide universe from

深度学习加快了3D微观神经成像的速度

  德克萨斯州奥斯汀和圣地亚哥Salk研究所的研究人员使用深度学习技术,开发了一种新的显微方法,可以使用于大脑成像的显微技术快16倍。研究人员使用德克萨斯大学奥斯汀分校(UT Austin)德克萨斯高级计算中心(TACC)的数据训练了他们的深度学习系统。索尔克生物学研究所Waitt先进生物光子学核心