半导体所等在半导体材料“异构外延”研究中获进展

半导体产业经过长期发展,已进入“后摩尔时代”,“超越摩尔定律”迎来了高潮,未来半导体产业的发展需跳出原有框架寻求新的路径。面对这些机遇和挑战,宽禁带先进半导体等基础材料的制备也在孕育突破,新材料、新工艺和异构集成等将成为后摩尔时代的重要技术路线(图1)。 近期,中国科学院半导体研究所照明研发中心与北京大学、北京石墨烯研究院、北卡大学的科研团队合作,实现了石墨烯玻璃晶圆氮化物“异构外延”突破,证实了氮化物外延摆脱衬底限制的可能性,为不同半导体材料之间的异构集成提供了新思路。研究人员提出一种纳米柱辅助的范德华外延方法,利用金属有机化学气相沉积(MOCVD),首次在玻璃衬底上成功外延出连续平整的准单晶氮化镓(GaN)薄膜,并制备出蓝光发光二极管(LED)。 研究人员在非晶玻璃衬底上插入石墨烯层,为后续氮化物的生长提供外延取向关系。在生长初期通过石墨烯层有效引导氮化物的晶格排列,避免了非晶衬底上氮化物生长通常呈现的、杂乱无序的多......阅读全文

专家建议加快宽禁带与超宽禁带半导体器件发展

   “生产集成电路所需要的硅材料已趋近完美,但是未来还有什么材料可以替代硅,这是业界急切希望解决的问题”。中国科学院院士、国家自然科学基金委员会信息科学部主任郝跃近日在 “纪念集成电路发明60周年学术会议”上如是说。该会议由中国电子学会、中国科学院信息技术科学部等共同主办。  自1958年杰克·基

香山科学会议聚焦宽禁带半导体

  “随着第三代半导体材料、器件及应用技术不断取得突破,甚至可能在21世纪上半叶,导致一场新的信息和能源技术革命。”在11月8日召开的以“宽禁带半导体发光的发展战略”为主题的第641次香山科学会议上,与会专家指出,宽禁带半导体核心技术一旦解决,必将引起应用格局的巨大改变。  如今,半导体发展已经历了

物理所宽禁带半导体磁性起源研究取得新进展

  中科院物理研究所/北京凝聚态物理国家实验室(筹)陈小龙研究员及其领导的功能晶体研究与应用中心一直致力于宽禁带半导体磁性起源问题的研究。最近,他们从实验和理论上证明了双空位导致磁性,首次在实验上给出了直接证据,为通过缺陷工程调控宽禁带半导体的磁性提供了实验基础,相应结果发表在Phy

我建成亚洲最大宽禁带碳化硅基地

  近日,记者从中国宽禁带功率半导体产业联盟获悉,国家重大科技成果转化及山东省重点建设项目——山东天岳先进材料科技有限公司功能器材用碳化硅衬底项目顺利完工,标志着我国建成亚洲规模最大的宽禁带碳化硅半导体材料生产基地。   据悉,宽禁带碳化硅半导体材料是第三代半导体核心材料,目前正在逐步取代硅(Si)

“宽禁带半导体电机控制器开发和产业化”技术交流会召开

  为更好地总结“新能源汽车”重点专项“宽禁带半导体电机控制器开发和产业化”项目执行情况,推进项目任务顺利实施,项目牵头单位湖南中车时代电动汽车股份有限公司联合哈尔滨工业大学,于2019年1月8日在哈尔滨召开了“2018年度项目进展交流会”。专项总体专家组专家、项目及课题负责人、项目管理人员及相关财

量子工程非平衡掺杂实现高效p型超宽禁带氮化物材料

  近日,中国科学院长春光学精密机械与物理研究所研究员黎大兵团队和中科院半导体研究所研究员邓惠雄合作,报道了一种通过量子工程非平衡掺杂实现高效率p型超宽禁带氮化物材料的方法。该研究发现,将GaN量子点引入高Al组分AlGaN材料体系中,可以提升材料局部价带顶能级,使得Mg受主激活能大幅度降低,从而获

第三代半导体外延材料的产业化应用之路

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517721.shtm手机电脑快充器件、新能源车载电源、5G基站、MicroLED、深紫外LED……这些设备都离不开氮化镓外延材料,这也让该材料成为资本市场关注的“宠儿”。根据相关市场调研机构的预测显示,到

超宽禁带半导体新进展-推动氧化镓功率器件规模化应用

  中国科学院上海微系统与信息技术研究所研究员欧欣课题组和西安电子科技大学郝跃课题组教授韩根全合作,在氧化镓功率器件领域取得新进展。该研究成果于12月10日在第65届国际微电子器件顶级会议——国际电子器件大会(International Electron Devices Meeting, IEDM)

欧欣、郝跃课题组超宽禁带半导体异质集成研究获进展

  中国科学院上海微系统与信息技术研究所研究员欧欣课题组和西安电子科技大学郝跃课题组教授韩根全合作,在氧化镓功率器件领域取得新进展。该研究成果于12月10日在第65届国际微电子器件顶级会议——国际电子器件大会(International Electron Devices Meeting, IEDM)

二十年矢志突破国家“卡脖子”关键技术

勇担强“芯”使命,矢志突破国家“卡脖子”关键技术。2024年6月24日上午,全国科技大会、国家科学技术奖励大会、两院院士大会在京召开,西安电子科技大学(简称“西电”)马晓华教授牵头项目荣获2023年度国家科学技术进步奖一等奖。马晓华教授牵头项目荣获2023年度国家科学技术进步一等奖。据了解,西电微电

半导体所等在半导体材料“异构外延”研究中获进展

  半导体产业经过长期发展,已进入“后摩尔时代”,“超越摩尔定律”迎来了高潮,未来半导体产业的发展需跳出原有框架寻求新的路径。面对这些机遇和挑战,宽禁带先进半导体等基础材料的制备也在孕育突破,新材料、新工艺和异构集成等将成为后摩尔时代的重要技术路线(图1)。  近期,中国科学院半导体研究所照明研发中

2025深圳国际碳化硅及相关材料设备展览会

2025深圳国际碳化硅及相关材料设备展览会Shenzhen Silicon Carbide and Related Materials and Equipment Exhibition基本信息时间:2025年4月9-11日地点:深圳会展中心展会简介     近年来,碳化硅等宽禁带半导体已成为全球高技

下一代半导体的宽与窄

  随着以氮化镓、碳化硅为代表的第三代半导体步入产业化阶段,对新一代半导体材料的探讨已经进入大众视野。走向产业化的锑化物,以及国内外高度关注的氧化镓、金刚石、氮化铝镓等,都被视为新一代半导体材料的重要方向。从带隙宽度来看,锑化物属于窄带半导体,而氧化镓、金刚石、氮化铝属于超宽禁带半导体。  超宽禁带

浙江大学杭州国际科创中心招聘博士后

  岗位职责分支1.  二维材料生长方向:  1. 大面积二维材料/薄膜(过渡金属硫族化物、石墨烯、氮化硼等)的生长,有相关经验者(cvd等)优先;新型二维材料的生长与探索;搭建生长设备等;  2. 对宽禁带半导体方向有一定了解及有相关研究经历者更加欢迎;  分支2.  二维材料异质界面的物理和化学

新方法实现氢化锂介导光化学合成氨

原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516668.shtm近日,中国科学院大连化学物理研究所研究员陈萍、研究员郭建平团队在氢化物化学固氮研究方面取得新进展。团队揭示了氢化锂光致脱氢变色现象与固氮之间的关联,并由此构筑了氢化锂介导的光催化合成氨

化合物半导体材料的分类

化合物半导体材料种类繁多,性质各异,如Ⅲ-Ⅴ族和Ⅱ-Ⅵ族化合物半导体及其固溶体材料,Ⅳ-Ⅳ族化合物半导体(SiC)和氧化物半导体(Cu2O)等。它们中有宽禁带材料,也有高电子迁移率材料;有直接带隙材料,也有间接带隙材料。因此化合物半导体材料比起元素半导体来,有更广泛的用途。

化合物半导体材料的种类

化合物半导体材料种类繁多,性质各异,如Ⅲ-Ⅴ族和Ⅱ-Ⅵ族化合物半导体及其固溶体材料,Ⅳ-Ⅳ族化合物半导体(SiC)和氧化物半导体(Cu2O)等。它们中有宽禁带材料,也有高电子迁移率材料;有直接带隙材料,也有间接带隙材料。因此化合物半导体材料比起元素半导体来,有更广泛的用途。

商场回应禁带3周岁以上男童进女厕

  2月1日,浙江宁波。一商场女厕贴标语“请勿带3周岁以上男童进入”引争议。有网友觉得,3岁小孩不太会自己上厕所,年龄太小可能会遇到危险,这种标语对单独带娃出门的妈妈并不友好。也有网友认为,希望这种标语能早点普及。对此,商场工作人员回应称,从商场开业就有这个标语,很多顾客反馈觉得4、5岁的男孩进去不

大连化物所实现氢化锂介导光化学合成氨

  近日,中国科学院大连化学物理研究所氢能与先进材料研究部复合氢化物材料化学研究组研究员陈萍、郭建平团队,在氢化物化学固氮研究方面取得了新进展,揭示了氢化锂(LiH)光致脱氢变色现象与固氮之间的关联,并由此构筑了LiH介导的光催化合成氨过程。  氮气加氢合成氨是维持地球上生命延续、满足人类社会对能源

半导体的平均电离能和禁带宽度的区别

首先我们得先明确一下在化学中电离能的概念,1mol气态基态原子失去1mol电子所得到1mol气态基态正离子所需要的能量称为该原子的第一电离能。能带这一名词出自讨论金属化学键的能带理论中,即它是以分子轨道理论为基础将一系列能量简并的原子轨道重新组合成另一组能量参差的新轨道即能带。也就是每一种原子轨道都

硅衬底InGaN基半导体激光器研究方面取得进展

  硅是半导体行业最常见的材料,基于硅材料的电子芯片被广泛应用于日常生活的各种设备中,从智能手机、电脑到汽车、飞机、卫星等。随着技术的发展,研究者发现通过传统的电气互联来进行芯片与系统之间的通信已经难以满足电子器件之间更快的通信速度以及更复杂系统的要求。为解决这一问题,“光”被认为是一种非常有潜力的

关于氮化物的简介

  氮与电负性比它小的元素所形成的二元化合物。叠氮化物 及氮与氢、卤素和氧族元素的化合物不属于氮化物。一般指固体氮化物,并主要指 金属氮化物。例如氮化锂Li3N、氮化镁 Mg3N2、氮化铝AlN、氮化钛TiN、氮化钽TaN等。多数难熔,热稳定性很高。有些是金属加热后直接与氮化合而成,有些是由金属、金

南科大在新型多沟道氮化镓电力电子器件领域取得进展

近日,南方科技大学电子与电气工程系助理教授马俊与瑞士洛桑联邦理工大学教授Elison Matioli、苏州晶湛半导体有限公司董事长程凯等团队合作,在Nature Electronics发表了题目为“Multi-channel nanowire devices for efficient power

II族氧化物半导体光电子器件基础研究启动

  近日,“973”计划项目“II族氧化物半导体光电子器件的基础研究”启动会在长春召开。中科院长春光机所、物理所、上海光机所和南京大学、中山大学、东南大学、吉林大学等单位将瞄准目前半导体领域的前沿和热点,把II族氧化物半导体作为主要研究对象,以期在短波长激光器件和紫外光电探测器等方面实现突

我所实现氢化锂介导光化学合成氨

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202401/t20240123_6968198.html近日,我所氢能与先进材料研究部复合氢化物材料化学研究组(DNL1901组)陈萍研究员、郭建平研究员团队在氢化物化学固氮研究方面取得新进展,揭示了氢化锂(LiH)光致脱

通过阻挡电子注入来改善p型有机场效应晶体管的理想性

  苏州大学揭建胜团队Adv. Funct. Mater.:  自1986年第一个基于有机半导体材料的场效应晶体管被报道以来,有机场效应晶体管(OFET)在化学、物理、材料以及微电子领域都得到了研究人员的广泛关注。在器件应用方面,OFET被认为是未来有机柔性集成器件的基本构成单元,可广泛应用于柔性智

上海市发布重点实验室筹建立项清单

关于上海市2024年度“科技创新行动计划”重点实验室筹建立项的通知沪科〔2024〕491号各有关单位:根据《上海市2024年度“科技创新行动计划”重点实验室(第一批)申报指南》与《上海市重点实验室建设与运行管理办法》(沪科规〔2022〕6号)有关规定,协同各推荐部门评审论证,现启动“上海市宽禁带与超

氮化铟的应用特点

氮化铟是一种新型的三族氮化物材料。这种材料的引人之处在于它的优良的电子输运性能和窄的能带,有望应用于制造新型高频太拉赫兹通信的光电子器件。氮化铟(InN)是氮化物半导体材料的一种。常温常压下的稳定相是六方纤锌矿结构,是一种直接带隙半导体材料。

碳化硅在三大领域的作用

人类1905年 第一次在陨石中发现碳化硅,现在主要来源于人工合成,碳化硅有许多用途,行业跨度大,可用于单晶硅、多晶硅、砷化钾、石英晶体等、太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。在半导体领域的应用碳化硅一维纳米材料由于自身的微观形貌和晶体结构使其具备更多独特的优异性能和更加广

探索新材料,创造“芯”未来-——HORIBA半导体材料表征主题研讨会圆满召开!

  2024年3月23日,HORIBA 开放日——半导体材料表征主题研讨会在HORIBA集团全新投资的厚立方大楼(C-CUBE) 成功举办。本次研讨会由HORIBA携手上海集成电路材料研究院、集成电路材料创新联合体共同举办,吸引了诸多技术专家与前端企业共聚一堂,共同探讨光刻胶、宽禁带材料和光掩膜等关