活细胞成像显微镜

活细胞成像显微镜是一种用于生物学领域的分析仪器,于2012年3月15日启用。 技术指标 固态光源SSI(含7条激发谱线),高精度电动载物台(X、Y:20nm,Z:5nm),CalSnapHQ2 CCD.EMCCD.湿控及CO2系统装置,自动对焦装置(焦距时间100ms,精度25nm)。10×、20×空气镜,40×空气镜,60×、100×油镜。 主要功能 该系统可进行多点拍照、三维重构、细胞追踪、完美对焦等功能,同时软件可以进行快速去卷积、FRET分析,共定位分析等功能。......阅读全文

活细胞提取及应用——单个细胞级别的活细胞提取

由于细胞异质性的存在,单细胞层面的分析就变得十分重要。目前对于单细胞分析的方法主要还是通过化学、生物学的方法进行裂解后,提取内容物进行分析,然而这种方法往往会对样本造成一些损伤。直接提取活细胞具有诸多优点,但是操作苦难。如今一种全新使用FluidFM科技的技术新报道有望提供一种活细胞提取新型的简易方

新型显微镜“看到”活细胞内超微小结构

  日本研究人员日前利用新开发的显微镜,首次在世界上观测到了活细胞内的线粒体等非常微小的器官。  日本原子能研究开发机构和奈良女子大学研究人员说,他们联合开发出的新型显微镜称为“激光等离子体软X线显微镜”,它利用了波长比紫外线短但是比X射线长的电磁波“软X线”,无需使用荧光物质,就能观测到

活细胞荧光成像的新型标记法及其在STED中的应用(三)

细胞骨架如微管、微丝等一直是生命科学研究的重点。近期Johnsson等科学家将SiR直接标记于与微管和微丝分别特异性结合的小分子docetaxel和jasplakinolide,即形成SiR-tubulin和SiR-actin,实现了在不对细胞或组织进行任何转染或基因组修饰的条件下直接进行活细胞成像

活细胞荧光成像的新型标记法及其在STED中的应用(一)

如何免除活细胞标记中的清洗(washout)步骤?SNAP-tag等标记方法为活细胞显微成像带来了革命性的变化,也因此被Nature杂志评为2004年最热门的科研技术之一。但是传统的SNAP-tag标记仍然有很大的缺陷。将带有荧光探针的底物BG加入细胞后需要多次清洗细胞,才能将未结合的BG去除从而消

研究实现活细胞及线虫体内DNA和RNA的同步荧光成像

  近期,中国科学院合肥物质科学研究院智能机械研究所智能微纳器件研究室研究员张忠平和王振洋领导的团队在生物体核酸结构的同步原位影像分析方面取得新进展,合成了一种具有高效生物膜穿透能力的阳离子碳量子点,实现了对活细胞及线虫体内DNA和RNA的同步荧光成像。相关研究成果发表在国际化学期刊《德国应用化学》

活细胞荧光成像的新型标记法及其在STED中的应用(四)

荧光显微镜在研究活细胞中蛋白质分子的定位、相互作用及动力学等生命活动中起着不可或缺的作用。将荧光蛋白如绿色荧光蛋白和目的蛋白融合表达,然后利用荧光蛋白发出的特异性荧光来观察和追踪目的蛋白分子在科学研究中得到了广泛的应用。但是荧光蛋白具有量子产量低、成熟速度受限、光谱容易受到环境因素影响及容易形成聚集

活细胞荧光成像的新型标记法及其在STED中的应用(二)

图5.EGFR在细胞中转运的实时记录。(a)示意图,用于解释如何利用FAPL探针来实时追踪EGFR相关的细胞膜转运过程。(b)COS7细胞中表达的EGFR用DRBG-488标记(绿色),溶酶体用lysosometracker(红色)标记。(c)对表达SNAP-EGFR–CFP的MDCK细胞进行共聚焦

活细胞荧光成像的新型标记法及其在STED中的应用(五)

SNAP-tag技术在STED超高分辨率显微成像中的应用近十年中,显微成像技术得到了飞跃的发展,填补光学显微镜(~200 nm)到电子显微镜(~0.1 nm)分辨率缺口,打破光学衍射极限的超高分辨率显微镜也越来越趋于成熟化。其中,德国马普研究所的Stefan Hell教授凭借其研发的受激发射

我国学者实现活细胞的高分辨低功耗快速拉曼成像

记者从中国科学技术大学了解到,该校工程科学学院Zachary J. Smith教授团队与合作者一起,提出了一种基于线扫描拉曼成像系统和偶氮增强拉曼探针相结合的快速生物成像方法,实现了对细胞器动态过程的高分辨率、低功耗的影像。相关研究成果日前在线发表于学术期刊《美国化学学会杂志》。 拉曼成像是一种

科学家在活细胞超分辨率成像领域取得重要进展

  来自美国霍华德休斯医学研究所Janelia研究园、中国科学院生物物理研究所、美国国立科学研究院、哈佛医学院等的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞内的动态生物过程。他们的新方法显著提高了结构光照明显微镜(structured illuminati

浙江大学250万采购多通道活细胞单分子荧光成像系统

近日浙江大学发布2022年7月采购意向,预计花费250万元采购多通道活细胞单分子荧光成像系统。多通道活细胞单分子荧光成像系统项目所在采购意向:浙江大学2022年7月政府采购意向采购单位:浙江大学采购项目名称:多通道活细胞单分子荧光成像系统预算金额:250.000000万元(人民币)采购品目:A021

显微镜成像原理

其实普通的光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像.第一次先经过物镜(凸透镜1)成像,这时候的物体应该在物镜(凸透镜1)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像.而后以第一次成的物像作为“物体”,经过目镜的第二次成像.由于我们观察的时候是在目镜的另外一侧

显微镜成像因素

由于客观条件,任何光学系统都不能生成理论上理想的像,各种相差的存在影响了成像质量。下面分别简要介绍各种相差。 1、色差 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。白光由红 橙 黄 绿 青 蓝 紫 七种组成,各种光的波长不同 ,所以在通过透镜时的折射率也不同,这样物方

显微镜成像原理

    显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜。显微镜成像原理:      显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸

清华大学第四届活细胞成像与超高分辨成像高级研讨会|活动回顾

2023 年 8 月 12 日,由清华大学蛋白质研究技术中心、生物医学测试中心和中国细胞生物学学会细胞器生物学分会共同举办的为期 6 天的【第四届活细胞与超高分辨成像高级研讨会】在清华大学生物医学馆圆满结束。参会人员合影8 月 7 - 9 日的理论研讨部分,来自清华大学、北京大学、中国科学院、中国科

活细胞的简介

  活细胞就是能进行新陈代谢、繁殖、复制的细胞。例如:筛管细胞,酵母菌,花粉,精子,血小板等。活细胞也称作活化细胞。

酵母活细胞染色

实验步骤展

活细胞的简介

  活细胞就是能进行新陈代谢、繁殖、复制的细胞。例如:筛管细胞,酵母菌,花粉,精子,血小板等。活细胞也称作活化细胞。

富集活细胞实验

实验方法原理 在 25 ml 缧口盖离心管中加人6 ml Ficoll-Hypaque溶液,将 9 ml 含 2×107 个细胞的培养基加在上面,离心,从交界部位收集活细胞。实验材料 细胞悬液D-PBSA试剂、试剂盒 Ficoll-Hypaque溶液或其他类似物仪器、耗材 离心管或常规容器生长培养基

监测活细胞浓度,

  活细胞浓度测量在发酵过程中具有非常重要的作用。通过它可以了解生物反应器中菌体或细胞生长状况,也可以了解一些描述菌体或细胞生长或生产能力的间接参数,如比生产速率,比基质消耗速率,细胞代谢流衡算等。    然而由于活细胞浓度传感技术的困难,传统的测量方法还是通过手工取样测量,操作复杂,滞后时间长

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

新型显微镜可“看到”活细胞内超微小结构

  日本研究人员日前利用新开发的显微镜,首次在世界上观测到了活细胞内的线粒体等非常微小的器官。  日本原子能研究开发机构和奈良女子大学研究人员说,他们联合开发出的新型显微镜称为“激光等离子体软X线显微镜”,它利用了波长比紫外线短但是比X射线长的电磁波“软X线”,无需使用荧光物质,就能观测到

Lattice-Lightsheet-7活细胞晶格激光片层扫描显微镜共享

仪器名称:Lattice Lightsheet 7活细胞晶格激光片层扫描显微镜仪器编号:A23000133产地:德国生产厂家:Zeiss型号:Lattice Lightsheet 7出厂日期:20231116购置日期:20231116所属单位:医研院>生物医学测试中心>细胞生物学平台>细胞平台光镜机

计算显微成像算法-使活细胞光显微分辨率达60纳米

  近日,哈尔滨工业大学(以下简称哈工大)仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。11月16日,研究成果在线发表于国际权威杂志《自然·生物技术》。  显微

PNAS:新型荧光cAMP指示器有助于神经元活细胞成像

环磷酸腺苷(cAMP)是一种胞内信使分子,负责包括神经元在内的许多细胞的功能,促进轴突的生长,维持神经元间的通信。cAMP的分子途径已得到充分研究,已知它在调节突触功能中发挥重要作用;然而,能够精确监测其细胞内活动的指标还有待开发。现在,Naoto Saitoh带领的研究团队通过开发一种新型绿色荧光

5分钟了解活细胞成像:近年来市场活跃的新产品

NanoLive  Nanolive于2013年11月在瑞士洛桑成立,其研发团队与国际知名的洛桑联邦理工学院(EPFL)高级光电微实验室合作,为数字化全息显微镜(DHM)的开创人。Nanolive于2015年推出“实时无标记活细胞3D断层扫描显微镜”,实时高速、高分辨、无侵入式、无需任何标记,能在几

全新光学显微成像技术帮科学家看到活细胞蛋白质

   这些技术为研究人员插上前进的翅膀。  荧光标签和光片成像相结合,产生超分辨率图像。图片来源:Wesley R. Legant  生物物理学家Joerg Bewersdorf说,2006年是荧光显微镜学的奇迹之年。而与之相媲美的另一个年份是1905年,当时爱因斯坦以相对论、量子论和原子物理学变革

突破!研究团队攻克荧光蛋白和染料在活细胞成像中的局限

近日,我所生物技术研究部分子探针与荧光成像研究组(1818组)徐兆超研究员、苗露副研究员团队通过调控荧光蛋白与荧光染料之间的荧光共振能量转移(Fluorescence resonance energy transfer,FRET),提高了荧光蛋白的光稳定性,并基于化学遗传学策略赋予外源荧光染料遗传编

华东理工杨弋教授发文:这种合成方法实现活细胞RNA成像

  2019年11月5日,华东理工大学生物反应器工程国家重点实验室杨弋教授等在Nature Biotechnology(《自然—生物技术》)杂志上发表了封面学术论文,题为“Visualizing RNA dynamics in live cells with bright and stable fl