XRF分析技术的相关介绍

XRF分析是一项成熟的技术,利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。用于在整个行业范围内验证成分,是一种快速的、非破坏式的物质测量方法。在测定电子电器产品中是否存在限用物质时,一般采用XRF进行初筛。其基本的无损性质,加上快速测量和结构紧凑的台式仪器等优点,能实现现场分析并立即得到结果。......阅读全文

XRF分析技术的相关介绍

  XRF分析是一项成熟的技术,利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。用于在整个行业范围内验证成分,是一种快速的、非破坏式的物质测量方法。在测定电子电器产品中是否存在限用物质时,一般采用XRF进行初筛。其基本的无损性质,

XRF分析仪的相关分析因素介绍

  a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。  b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量有关。  c) 根据各元素的特征X射线的强

XRF的能量相关信息介绍

  而根据量子理论,X射线可以看成由一种量子或光子组成的粒子流,每个光子具有的能量为:  E=hν=h C/λ  式中,E为X射线光子的能量,单位为keV;h为普朗克常数;ν为光波的频率;C为光速。  因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外

XRF镀层测厚仪的相关介绍

  XRF镀层测厚仪对焦系统确保每次测量中X射线管、零部件和探测器间的X射线可测量且几何光路连续一致;否则会导致结果不准确。XRF镀层测厚仪相机帮助用户精确定位测量区域。某些情形下相机用于向自动操作模块提供图像信息,或包括放大图像以精确定位需要测量的区域。样品可放置于固定或可移动的XRF镀层测厚仪样

XRF分析的基本介绍

  XRF分析是一项成熟的技术,利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。用于在整个行业范围内验证成分,是一种快速的、非破坏式的物质测量方法。在测定电子电器产品中是否存在限用物质时,一般采用XRF进行初筛。其基本的无损性质,

XRF镀层测厚仪的技术介绍

  XRF技术的最小检测厚度为大约1nm。如果低于这个水平,则相应的特征X射线会淹没于噪声信号中,无法对其进行识别。最大范围约为50μm左右。如果在该水平之上,则镀层厚度将导致内层发射的X射线无法穿透镀层而到达探测器。即厚度的任何进一步增加都不会导致更多的X射线到达探测器,因此厚度达到饱和无法测出变

选择XRF技术的优势介绍

  相比其他分析技术,XRF具有许多优势。  其速度较快。能够测量多种类型的元素及其在不同类型材料中的含量浓度。此外,其属于非破坏性技术,仅需制备少量样品甚至完全不需要制备样品,因此,其相比其他技术成本较低。  这也就是为什么全球这么多人选择使用XRF技术进行日常的材料分析工作。

XRF检测定性原理的相关介绍

  X射线荧光光谱分析是指试样中的元素受到足够能量的激发后发射出特征X射线(荧光),根据特征X射线的波长及其强度进行定性、定量分析的方法。  众所周知,原子是由原子核和核外电子构成的,电子处在核外不同能级的壳层上,这些壳层自内向外依次称为K(n=1)层,L(n=2)层,M(n=3)层……当用具有足够

XRF熔融制片方法的相关介绍

  X射线荧光分析法是一种现代仪器分析方法,具有分析迅速、非破坏性分析、光谱不受化学状态的影响、分析精度高、分析范围广(4Be~92U)、定性定量分析、样品制备简单等优点。  仪器装置分为X射线发生装置、分光装置、计数记录装置。

XRF的分析

  a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。  b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量有关。  c) 根据各元素的特征X射线的强

红细胞分析技术的相关介绍

  现行的血细胞分析仪一般可对白细胞进行分群或分类,但是对红细胞的体积大小和每个红细胞内血红蛋白含量的多少进行分析和分群则是更加特殊的技术。早在上世纪80 年代开始Technicon 公司采用激光分析技术制作的血液分析仪就可以做到这些,目前BAYER ADVIA 120 也是唯一可对红细胞的体积和色

XRF土壤分析仪的技术优势

土壤分析测试仪主要优势1便于使用 2该系统通过可在阳光直射下操作的 英寸彩色触摸屏进行操作。界面易于导航,带有即使戴着手套也可以使用的大图标。只需最少的培训即可操作该系统。3符合人体工程学的设计、9 公斤的轻质结构和 10-12 小时的长电池寿命意味着该系统可以长时间连续使用而疲劳程度低。 4增强的

XRF光谱分析技术对元素分析的作用

  诸多元素分析人员都会选择XRF光谱分析技术,因为它可以在PPM到100%的浓度变化范围中确定元素成分并将其量化。 而且,它基本上不要求样本准备工作,也不会破坏样品, 彻底分析样品得到测试结果的过程也非常短。 所有这些优点使得X荧光光谱分析技术与其它的元素分析技术相比大大地降低了样品分析的单位成本

金属元素分析XRF检测技术解析

  1895年,伦琴在研究阴极射线时偶然发现一种能穿透物质产生荧光的未知射线,并将它命名为X射线, 这一发现引起了许多物理学家的关注。1908年,物理学家Barkla发现物质被激发产生的X射线中含有两种成分,除了原入射X射线外,还含有一种与元素有关的标识谱线成分,又称为特征X射线。随后,Barkla

XRF技术讲解

  X射线荧光光谱(XRF)技术是一项可用于确定各类材料成分构成的分析技术,已经成熟运用多年。其应用方向包括金属合金、矿物、石化产品等等。  X射线形成部分电磁波谱。其处于紫外线辐射的高能侧,使用千电子伏特表示能量高低,纳米表示波长。  XRF一般可用于分析从钠到铀的所有元素,其可识别浓度范围最低至

XRF合金分析仪的原理介绍

  合金分析仪的是一种XRF光谱分析技术,可用于确认物质里的特定元素, 同时将其量化。它可以根据X射线的发射波长(λ)及能量(E)确定具体元素,而通过测量相应射线的密度来确定此元素的量。如此一来,XRF度普术就能测定物质的元素构成。  每一个原子都有自己固定数量的电子(负电微粒)运行在核子周围的轨道

X射线荧光分析技术的相关介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法。  X射线荧光分析又称X射线次级发射光谱分析。本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。1948年由H.费里德曼(H.Friedmann)和L.S

X射线荧光分析技术相关介绍

  X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。  X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的

能量色散-X-射线荧光-(ED-XRF)的相关介绍

  能量色散 X 射线荧光 (EDXRF) 是用于元素分析应用的两种通用型 X 射线荧光技术之一。在 EDXRF 光谱仪中,样品中的所有元素都被同时激发,而能量色散检测仪与多通道分析仪相结合,用于同时收集从样品发射的荧光辐射,然后区分来自各个样品元素的特性辐射的不同能量。EDXRF 系统的分辨率取决

XRF分析仪样品制备中蒸发和冷冻干燥技术介绍

  生物组织试样常用的干燥方法是冷冻干燥法,让生物样品在冷冻状态下用真空泵将水抽干。其优点是样品在处理过程中不会被污染,待测元素不因挥发而损失,但设备昂贵、费时。也可以采用放在氧等离子体低温干燥箱中灰化,低温等离子是气体在低压于高频电场的作用下产生的,在这种情况下,由于分子或原子间的间距大,加大了电

质谱分析技术电离源的相关介绍

  电离源产生的不同离子之间能够互相反应,使得电离的结果更加丰富而复杂。比如在EI的作用下能够产生大量的离子,内能较大的离子在与中性分子(如He)碰撞时能够自发裂解产生更多的碎片离子。这种离子-分子反应一般很难进行完全,往往在得到许多碎片离子的同时还保留着部分母体离子,不过,通过增加离子内能(如调节

XRD分析与XRF分析的异同

1,用途不同。XRD是x射线衍射光谱,(X-ray diffraction analysis)是用于测定晶体的结构的,而XRF是x射线荧光发射谱,(X-ray fluorescence analysis)主要用于元素的定性、定量分析的,一般测定原子序数小于Na的元素,定量测定的浓度范围是常量、微量、

XRD分析与XRF分析的异同

1,用途不同。XRD是x射线衍射光谱,(X-ray diffraction analysis)是用于测定晶体的结构的,而XRF是x射线荧光发射谱,(X-ray fluorescence analysis)主要用于元素的定性、定量分析的,一般测定原子序数小于Na的元素,定量测定的浓度范围是常量、微量、

XRD分析与XRF分析的异同

1,用途不同。XRD是x射线衍射光谱,(X-ray diffraction analysis)是用于测定晶体的结构的,而XRF是x射线荧光发射谱,(X-ray fluorescence analysis)主要用于元素的定性、定量分析的,一般测定原子序数小于Na的元素,定量测定的浓度范围是常量、微量、

波长色散型和能量色散型XRF的相关介绍

  不同元素发出的特征X射线能量和波长各不相同,因此通过对X射线的能量或者波长的测量即可知道它是何种元素发出的,进行元素的定性分析。同时样品受激发后发射某一元素的特征X射  线强度跟这元素在样品中的含量有关,因此测出它的强度就能进行元素的定量分析。  因此,X射线荧光光谱仪有两种基本类型:  波长色

材料成分分析利器XRF-UniQuant-独特的无标样分析技术

   XRF(X射线荧光光谱仪)已在各类材料分析中广泛应用,然而,在实际样品分析中,标样的制备是决定分析结果准确程度的重要因素。赛默飞世尔科技的UniQuant无标样技术则可以在不需要标样的情况下进行任何尺寸、形状和状态样品的快速定性、定量、非破坏性的元素分析。2011年4月28

XRF定量分析的基本信息介绍

  X射线荧光光谱仪(XRF)是用于元素定量分析的仪器,广泛应用于钢铁、水泥、石油化工、环境保护、材料等各个领域,其在制样方便、无损、快速等方面优于其它分析方法,但其在定量精度和样品适应范围等方面一直受到挑战。  当前XRF广泛应用的领域往往具备三个特点:一是样品基体相对稳定,二是分析元素种类有限,

关于XRF元素定量分析的问题介绍

  1) 不同的元素激发和探测效率不同,有的元素很容易激发和检测,有的元素很难激发和检测,那么强度和含量的关系大不相同。  2) X射线荧光光谱分析中一个重要的难点是解决元素之间的吸收增强效应的问题。  最简单的方法当然是采用标准样品,通过检测标准样品的荧光强度,在荧光强度和含量之间通过最优化算法(

XRF分析铜合金主元素含量的方法技术研究

铜及其合金具有优良的导电、导热、耐腐蚀等性能,铜合金中各元素含量不同直接影响铜合金的金属性能。因此对铜合金的化学成分快速、准确的分析对铜合金的生产贸易及加工等都极为重要。采用X射线荧光分析方法分析铜合金具有分析速度快、检测范围广、可现场原位无损分析等优点。本文以黄铜、青铜和白铜为重点采用X射线管激发

XRF分析铜合金主元素含量的方法技术研究

铜及其合金具有优良的导电、导热、耐腐蚀等性能,铜合金中各元素含量不同直接影响铜合金的金属性能。因此对铜合金的化学成分快速、准确的分析对铜合金的生产贸易及加工等都极为重要。采用X射线荧光分析方法分析铜合金具有分析速度快、检测范围广、可现场原位无损分析等优点。本文以黄铜、青铜和白铜为重点采用X射线管激发