X射线显微分析技术介绍
中文名称X射线显微分析英文名称X-ray microanalysis定 义应用X射线显微分析器探测细胞或组织的微小区域内元素成分的技术。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)......阅读全文
X射线显微分析技术介绍
中文名称X射线显微分析英文名称X-ray microanalysis定 义应用X射线显微分析器探测细胞或组织的微小区域内元素成分的技术。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)
X射线显微分析
中文名称X射线显微分析英文名称X-ray microanalysis定 义应用X射线显微分析器探测细胞或组织的微小区域内元素成分的技术。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)
X射线荧光分析技术介绍
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。 在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其
X射线荧光分析技术相关介绍
X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。 X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的
X射线荧光分析技术的相关介绍
X射线荧光分析是确定物质中微量元素的种类和含量的一种方法。 X射线荧光分析又称X射线次级发射光谱分析。本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。1948年由H.费里德曼(H.Friedmann)和L.S
X射线荧光分析技术的特点介绍
1.分析速度快,通常每个元素分析测量时间在2~lOOs之内即可完成。 2.非破坏性,X射线荧光分析对样品是非破坏性测定,使得其在一些特殊测试如考古、文物等贵重物品的测试中独显优势 3.分析样品范围广,可以对元素周期表上的多种元素进行分析,并可直接测试各种形态的样品。 4.分析样品浓度范围宽
X射线荧光分析技术的应用介绍
随着仪器技术和理论方法的发展,X射线荧光分析法的应用范同越来越广。在物质的成分分析上,在冶金、地质、化工、机械、石油、建筑材料等工业部门,农业和医药卫生,以及物理、化学、生物、地学、环境、天文及考古等研究部门都得到了广泛的应用:有效地用于测定薄膜的厚度和组成.如冶金镀层或金属薄片的厚度,金属腐蚀
X射线荧光分析显微镜的技术参数
1.测量元素:Na—U; 2. X射线管:铑(Rh)靶/管电压50 kV /管电流1 mA; 3. X射线荧光检测器:SDD硅漂移检测器; 4.透过X射线检测器:NaI(Ti)晶体; 5. X射线导管:单毛细管10μm / 100μm无滤光片; 6.光学图像:样品整体光学像及共轴放大图
X-射线显微镜的技术特点
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的
X射线荧光分析技术简介
X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级x射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级x射线)而进行物质成分分析和化学形态研究的方法。
X射线衍射技术分析内容
X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、各种纤维结构与取相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥的物相分析等。
X射线荧光分析技术分类
X射线荧光分析技术可以分为两大类型:波长色散X射线荧光分析(WDXRF)和能量色散X射线荧光分析(EDXRF);而能量色散型又根据探测器的类型分为(Si-PIN)型和SDD型。在不同的应用条件下,这几种类型的技术各有其突出的特点。目前,X射线荧光分析不仅材料科学、生命科学、环境科学等普遍采用的一
简述-X-射线荧光分析技术
X 射线荧光分析技术(XRF)作为一种快速分析手段,为我国的相关部门提供了一种可行的、低成本的并且及时的检测、筛选和控制有害元素含量的有效途径。相对于其他分析方法(例如发射光谱、吸收光谱、分光光度计、色谱质谱等),XRF 具有无需对样品进行特别的化学处理,快速、方便、测量成本低等明显优势,特别适
最新X射线分析著作《多晶X射线衍射技术与应用》出版
书号:978-7-122-19145-8 出版日期:2014年7月 定价:88元 开本:16 当当网链接:http://product.dangdang.com/23491711.html 多晶衍射技术是对晶态物质的组成、结构和存在情况进行分析测试的重要方法,已广泛应用
X射线荧光分析技术的应用
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。 在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;
X射线荧光分析技术的应用
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其他分析方法
X射线荧光分析技术的应用
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。 在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其
X射线荧光分析的技术简介
X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。 X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的
X射线荧光分析显微镜的用途
可以快速、无损地对样品(固体、粉末、液体、多层镀膜等)的元素组成进行定性、定量分析,还可以通过面扫描功能获得样品的元素面分布图(扫描区域最大可达10 cm×10 cm)。仪器配备的双真空式设计可以在高灵敏度模式或大气氛围模式分析从Na到U的所有元素。可应用于地质矿物、电子电器、生物医药、环境、考
X射线荧光分析的介绍
X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。 1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir
X射线投射检测技术的介绍
X射线检测技术是无损检测技术的一种。 X射线透射检查法可提供铸件检测部位有无缺陷及缺陷尺寸的照片。X射线透照法主要应用在铸件和机器部件中出现的诸如裂纹、孔洞和夹杂等缺陷的辨识和评价。 X射线不能直接测量,在测量前必须把它转化为可测量的量,有照相法和电信号法两种X射线检测技术。照相法是把X射线
磁X射线显微镜的相关介绍
同步辐射中所含的辐射均是偏振光,可以是线偏振光,也可以是椭圆或圆偏振光,X 射线也不例外。如果待测物质具有磁性,则具有不成对电子,具有电子自旋磁矩和轨道磁矩。磁矩与不同方向的偏振光的作用是不同的,如用不同方向的圆( 线) 偏振光照射磁性材料,可以得到不同的吸收谱,该性质称圆( 线) 二色性。
X-射线显微镜成像与构造介绍
X 射线显微镜的成像原理与光学显微镜基本上是一样的,遵从几何光学原理,其关键部件是成像和放大作用的光学元件,在光学显微镜中为透镜。由于X 射线的波长很短,在玻璃和一般物质界面上的折射率均接近1,故其成像放大元件不能用玻璃透镜,一般用波带片。此外,它们同样利用吸收衬度和位相衬度成像,同样要求有强光源及
X射线显微镜的光源的介绍
三类X 射线光源:实验室X 射线光源(X 射线管)、直线加速器和同步辐射装置。同步辐射是既近平行又高强度,且波长可调而成为最理想的光源。未见有将直线加速器用于X 射线显微镜,实验室光源有使用的,但不能用焦点在10 mm×1 mm 左右的封闭X 射线管,可以用高功率的旋转阳极X 射线管。另外,可用
x射线荧光光谱的微区分析技术介绍
铜矿物在自然界存在形式多样,有原生带次生富集带和氧化带等,共生矿物和伴生矿物众多,各类矿物均存在类质同象或者镜下光学特征相似的现象,传统的岩矿鉴定方法利用偏光、反光显微镜或实体显微镜等设备难以鉴别,对于此类矿物的鉴别需要借助化学分析方法或微区分析技术。 微区分析技术(电子探针、同步辐射、全反射
电子探针X射线显微分析仪的特征X射线和吸收电子
特征X射线 高能电子入射到样品时,样品中元素的原子内壳层(如K、L壳层) 处于激发态原子较外层电子将迅速跃迁到有空位的内壳层,以填补空位降低原子系统的总能量,并以特征X射线释放出多余的能量。 吸收电子 入射电子与样品相互作用后,能量耗尽的电子称吸收电子。吸收电子的信号强度与背散射电子的信号
X射线显微镜原理
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出
X射线衍射分析的基本介绍
X射线衍射分析(X-raydiffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对
X射线荧光分析的相关介绍
确定物质中微量元素的种类和含量的一种方法。它用外界辐射激发待分析样品中的原子,使原子发出标识X射线(荧光),通过测量这些标识X射线的能量和强度来确定物质中微量元素的种类和含量。根据激发源的不同,可分成带电粒子激发X荧光分析,电磁辐射激发X荧光分析和电子激发X荧光分析。
X射线荧光分析的特点介绍
1.分析速度快,通常每个元素分析测量时间在2~lOOs之内即可完成。 2.非破坏性,X射线荧光分析对样品是非破坏性测定,使得其在一些特殊测试如考古、文物等贵重物品的测试中独显优势 3.分析样品范围广,可以对元素周期表上的多种元素进行分析,并可直接测试各种形态的样品。 4.分析样品浓度范围宽