关于第一类内含子的发现和初步研究介绍

1975年,人们以啤酒酵母菌mt-DNA某些突变为标记进W+XW-杂交,发现W+传递到了代的比例为95%而W-几乎为零,现象上好似发生了单方赂基因转变(unidirectionalgeneconversion)。从W-到W+,由于W+中有内含子ScLDU.1,而W-则无,故人们认为上述现象与该内含了有关。顺序分析发现该内含子中存在一个可读框PRF,起始于AUG,共长235个密码子,为确定该产物的生化功能,人们以内含子上下游的一些富含GC的顺序作为探针来研究W+XW-杂交中两不同阶段的mtDNA,即:(1)合子刚形成时的mt-DNA,此时双亲的mt-DNA同时存在于一个细胞中;(2)几个细胞世代以后,当细胞是同质体时的mt-DNA。通过对W+XW-的子代中的同质体克隆的观察发现,内含子ScLSU.在子代中的传递效率高达95%,恰好与W+情况相吻合,而mt-DNA上远离ScLSU.内含子发生了单方向基因转变,而且在单方向基因转变......阅读全文

第1类内含子自我剪接rRNA的自我剪接介绍

  第1类内含子,其5’剪接点和3’剪接点的序列绝大部分为…外显子…U↓…内含子…G↓…外显子…,除了剪接点序列特征之外,第1类内含子还具有比较保守的4种10一12核苷酸的序列,分别以5’-P-Q-R-S-3’表示,P、Q、R、S的一致序列。序列能与Q序列互补,R序列能与S序列互补,形成一个所谓中部

科学家发现内含子对细胞适应饥饿的调节机制

  1月16日,加拿大舍布鲁克大学科研人员在Nature上发表了题为“Introns are mediators of cell response to starvation”的文章,发现内含子对细胞的饥饿反应具有调节作用。  内含子是所有真核细胞普遍存在的特征,通过对最初转录产物剪接除去内含子以产

内含子的重要功能:帮助酵母应对压力下的生存

  内含子(intron)的存在,是真核细胞蛋白质编码基因与原核细胞最大的区别。在真核细胞基因表达的过程中,需要经过RNA剪接反应将其去除。一般来说,内含子的长度远比编码蛋白的外显子序列长,并且执行剪接反应的酶——剪接体高度复杂,由170多个相关蛋白组成。剪接反应需要高度精准,移码错位一个碱基都会导

基因组所小内含子进化机制研究获得新进展

插入删除数目和比值  近日,在中国科学院北京基因组研究所副所长、中国科学院基因组科学与信息重点实验室主任于军研究员的指导下,该重点实验室博士生王大鹏通过对人类千人基因组计划数据的比较分析,进一步证实了两种DNA组分特殊效应在人类基因组中的存在,使该研究组延续十几年的小内含子基本功能和

两篇Nature发现内含子的新作用:帮助细胞应对压力

  一直以来,科学家们对许多真核蛋白编码基因中散布的没有明显生物学功能的非编码DNA片段到底起什么作用感到困惑。这些被称为内含子的序列通常在转录和翻译的时候,从它们的原始序列剪接出来并在蛋白质产生之前迅速被破坏。  1月16日Nature杂志上发表的两项最新研究意外发现了内含子的新作用(至少在酵母中

科学家揭示内含子来源环形RNA新分子及转录调控功能机制

  9月27日,国际学术期刊《分子细胞》(Molecular Cell)发表了中科院上海生命科学研究院生物化学与细胞生物学研究所陈玲玲组与计算生物学所杨力组的最新合作研究论文,发现来源于基因内含子区域的环形RNA新分子,揭示其成环机制及在基因转录调控中的重要功能。   众所周知,人类基因组中存

PLoS-Genet:科学家深度解析基因组的“黑暗面”:内含子

  近日,一项刊登在国际杂志PLoS Genetics上的一篇研究报告中,来自纽卡斯尔大学等机构的科学家们通过研究揭示了内含子突变与人类种群变异之间的直接关联;科学家们在基因组学研究中所面临的最大挑战之一就是揭示人类基因组的“黑暗面”所扮演的关键角色,这些区域即科学家们尚未找到携带特殊功能的基因组区

基因组所重复序列与哺乳动物内含子扩张关系研究获进展

  近日,在中国科学院北京基因组研究所副所长、基因组科学与信息重点实验室主任于军研究员和“百人计划”雷红星研究员的指导下,基因组所王大鹏博士、博士研究生苏尧等科研人员在哺乳动物基因组内含子扩张与基因功能关系研究,以及突变和自然选择在基因组进化中的作用研究中取得新进展。相关学术论文在Ev

CDK12通过抑制内含子多聚腺苷酸化调节DNA修复基因

  11月28日,麻省理工学院科研人员在Nature杂志上发表了题为“CDK12 regulates DNA repair genes by suppressing intronic polyadenylation”的文章,报道了CDK12的功能及其在肿瘤检测和治疗中的应用前景。  减弱同源重组(h

新的PPR蛋白dek2影响线粒体内含子1的剪切和线粒体功能...

新的PPR蛋白dek2影响线粒体内含子1的剪切和线粒体功能以及玉米籽粒的发育2017年1月1日遗传学期刊Genetics(影响因子4.6)在线发表了上海大学生命科学学院祁巍巍老师的有关玉米突变体基因克隆与功能分析新文章,题为:Mitochondrial function and maize ke

关于外显子基因识别的基本介绍

  许多基因中遗传上的“无义”片段——即内含子,会妨碍基因指导蛋白质的合成。现在,一篇发表于3月11日期的《自然遗传学》杂志上的文章提出了基因识别这些内含子的新机制。  细胞产生一种蛋白质时,首先需要将编码蛋白质的基因转化成RNA分子,接下来,通过细胞的剪接机制除去有潜在破坏作用的内含子,再把基因序

概述RNA剪接的类型

  RNA剪接及其机制的研究,不仅解决了不连续基因“连续”转录产物的问题,而且对于了解不连续基因的起源乃至整个生命起源与进化等问题,均产生极大的推动作用,另外,由此发现了核酸分子的催化功能,进一步拓宽了对于酶的认识。不连续基因中的介入序列称为内含子;被内含子隔开的基因序列称为外显子(exon)。一个

PNAS破解新物种进化的难题

  经过将近5000亿次的尝试,美国德克萨斯大学(UT)奥斯汀分校的研究人员,见证了一个罕见的事件,也许解决了一个进化的难题:内含子——位于基因中的非编码DNA序列,在基因组中是如何增加的。研究结果发表在《PNAS》杂志上,解决了关于新物种进化的基本问题,并可以增进我们对于“基因表达以及癌

结构基因的编码区的介绍

  自起始密码至终止密码的一般DNA序列称为编码区。编码区含有若干段编码/顷序,是该基因表达为多肽 链的部分,称为外显子。外显子是不连续的,其间有不编码的间隔顺序隔开,间隔顺序称为内含子。转录后的内含子顺序,在初级转录物加工时被切掉;因此,结构基因又称为不连续基因或断裂基因。如果一个结构基因含有n个

关于双顺反子mRNA的编码区的介绍

  自起始密码至终止密码的一般DNA序列称为编码区。编码区含有若干段编码/顷序,是该基因表达为多肽 链的部分,称为外显子。外显子是不连续的,其间有不编码的间隔顺序隔开,间隔顺序称为内含子。转录后的内含子顺序,在初级转录物加工时被切掉;因此,结构基因又称为不连续基因或断裂基因。如果一个结构基因含有n个

嗜热细菌或可解开高等生物早期进化谜团

  据物理学家组织网报道,生存在日本温泉中的一种嗜热细菌或许可解开高等复杂生物体早期进化的谜团,并可能成为21世纪生物燃料生产的关键。相关研究报告发表在《公共科学图书馆·生物学》(Public Library of Science Biology)杂志上。   分子生物学教授艾伦·兰博维兹介绍说,

“垃圾DNA”不“垃圾”

   就像从电影中删掉的片段一样,生物基因中的一些序列最终也会被剪掉,细胞不会利用它们制造蛋白质。现在,两项研究发现,这些被称为内含子的片段有助于酵母在艰难时期存活。这项研究揭示了DNA的另一种可能的功能,科学家曾认为这种功能是无用的。  未参与该研究的美国加州旧金山州立大学进化分子生物学家Scot

中国科大发现新型非编码RNA

  最近,中国科学技术大学单革教授实验室在国际知名杂志《自然-结构和分子生物学》(Nature Structural & Molecular Biology)发表研究性论文,报导了其实验室发现的一类新型非编码RNA以及此类非编码RNA的功能和功能机理。  非编码RNA是一大类不编码蛋白质而在细胞中起

微生物所开发出梭菌基因删除新策略

  梭菌(Clostridium)是一类与人类关系非常密切的细菌。其中既有许多致病菌,如产生外毒素的破伤风梭菌和肉毒梭菌等;也有一些具有重要工业应用价值或潜力的梭菌,如丙酮丁醇梭菌和热纤梭菌等。   基因失活或基因删除是细菌功能基因组学研究的基本手段。近年来,基于乳酸乳球菌II型内含子剪切机制开发

Science-|-西湖大学万蕊雪施一公团队再取重要进展

  次要剪接体负责U12型内含子的剪接,由5个小核RNAs (snRNAs)组成,其中只有一个与主剪接体共享。  2024年3月14日,西湖大学施一公及万蕊雪共同通讯在Science 在线发表题为“Structural basis of U12-type intron engagement by t

非编码RNA在调节压力恢复过程中具有微调基因表达的作用

  在最近一项研究中,科学家发现非编码RNA在调节压力恢复过程中具有微调基因表达的作用。  当细胞暴露于热或化学胁迫下时,就会形成称为细胞核应激体的细胞器。根据研究人员发表在《EMBO》杂志上的结果,当条件恢复正常时,细胞器会促进称为“内含子(intron)”的RNA片段的保留。  这很重要,因为内

异源蛋白表达的处理和修饰

  真核mRNA在离开细胞核进而在胞浆的核糖体上被翻译前需要特异的处理和修饰。这些过程包括去除内含子、5'端甲基化帽子形成和3'端加poly-A。内含子去除需要5'剪切位点、G75/G100U100A65AG65U保守序列、3'剪切位点、富含密啶NC66A100G10

关于RNA剪接的简介

  大多数脊椎动物基因的编码序列,无论是编码多肽的基因还是编码除mRNA以外的RNA分子的基因,都是由非编码的间隔序列(内含子)分隔为各个外显子部分。这些基因的外显子和内含子都转录在一条初级RNA转录分子中,接下来,此初级RNA转录分子要经过RNA剪接,此过程包括一系列的加工反应:RNA的内含子部分

载脂蛋白基因结构

  载脂蛋白基因的分离是通过用相应的cDNA作为探针筛选基因文库而完成的。比较基因的核苷酸序列与cDNA的核苷酸序列得以鉴定基因的内含子与外显子数目以及它们的分界线。大部分真核细胞的基因含有内含子,内含子不编码氨基酸,但有些内含子参与基因表达的调控。外显子通常占据基因内的三个区域:第一个区域不编码氨

信使RNA的拼接相关内容

  一、转运RNA的拼接:由酶催化,酶识别共同的二级结构,而不是序列。通常内含子插入到靠近反密码子处,与反密码子配对,取代反密码子环。第一步由内切酶切除插入序列,不需ATP;第二步由RNA连接酶连接,需要ATP。  二、四膜虫核糖体RNA的拼接:某些四膜虫26S核糖体RNA基因中有一个内含子,其拼接

施一公团队再取进展

  剪接体通常在外显子上组装,并经历重新排列以跨越相邻的内含子。大多数由内含子定义的剪接体状态已经在结构上得到了表征。然而,一个完全组装的外显子定义的剪接体的结构仍然未知。  2024年4月24日,清华大学/西湖大学施一公及清华大学闫创业共同通讯在Cell Research(IF=44)在线发表题为

Mol-Cell:基因的剪接作用如何影响机体的患病风险

  没人知道一天中有多少次,甚至在一个小时内,我们体内的数万亿个细胞需要制造多少蛋白质,但我们知道,细胞会以大规模的方式在不断制造蛋白质,一旦该过程发生的话,细胞核中就会发生一种称之为RNA剪接(RNA splicing)的编辑过程,其能够确保RNA指令被传送至与机体基因蓝图精确对应的细胞工厂中。图

自剪接

自剪接(self-splicing)出现在稀少的内含子组成核酸酶,核酸酶在只有RNA的情况下代替了剪接体的功能。自剪接的内含子有两种,称为I型及Ⅱ型。I型及Ⅱ型内含子以与剪接体类似的方式进行剪接,但不需要任何蛋白质。这种相似性使人相信这些内含子与剪接体在演化过程上有着关连。自剪接亦可能是非常古老,且

Cell重要成果:RNA剪切视图

  来自耶鲁大学的科学家以最详细的细节描述了RNA执行基因表达化学过程的特征。在发表于10月26日《细胞》(Cell)杂志上的论文中,研究人员报告了 II型内含子(group II introns)的14个晶体结构。II型内含子是一种具有酶催化功能的内含子,参与RNA剪切这一遗传复制的关键阶

如何对-cDNA、gDNA进行选择性引物设计?

设计策略 PS:该方法适用于检测或部分 DNA 片段克隆,不适合全长基因克隆 反转录 PCR 的主要问题是基因组 DNA (gDNA) 污染的存在,这将导致产生假阳性信号,特异性降低或对特定 RNA 的过高估计。为了消除 RT-PCR 中 gDNA 的干扰,可将引物设计为与两个外显子的接合