美《科学》杂志评出生物科技领域“最佳雇主”
美国《科学》杂志日前评选出2007年度生物科技领域的“最佳雇主”,德国伯林格·英格尔海姆公司、美国遗传技术研究公司、美国安进公司排名前三位。 这是《科学》杂志连续第六年进行生物科技领域“最佳雇主”网上调查,主要测评对象是生物技术、生物制药、传统制药以及相关行业的公司。 此前,美国遗传技术研究公司连续5年被《科学》杂志评为生物科技领域“第一雇主”,而今年来自德国的柏林格·英格尔海姆公司以微弱优势登上榜首。 今年《科学》杂志的“最佳雇主”榜前10名中首次出现了上述传统生物科技行业之外的企业——美国杜邦公司和美国孟山都公司。跻身前10名的其他“最佳雇主”还有美国先灵葆雅制药公司、美国健赞公司、瑞士诺华公司、英国与瑞典合资企业——阿斯利康公司以及美国强生公司。 此次网上调查的受访者主要包括“美国科学促进会”会员、该促进会网站的“科学职业”子网站的注册会员以及《科学》杂志网站的注册者等。此外,《科学......阅读全文
Science:HIV为何难以攻克?
一项刊登在《科学》(Science)的最新研究显示,当艾滋病病毒(HIV)感染某个细胞时,其干扰宿主基因组的位置十分重要,这对于艾滋病毒保持其持久力,以及在之后的时间里,继续感染细胞具有重要意义。领导这一研究的是美国国立癌症研究所艾滋病药物抗性研究项目组Stephen Hughes 博士,这一研
【Science】熬夜真的会变傻!
熬夜是科研人最常见的生活方式,有的甚至日夜颠倒,出于实验学习无奈,有的就是习惯了,越后半夜就越精神图片。 但这样长此以往,你真的会慢慢变傻! 为什么我们熬夜,早起后会昏昏沉沉呢? 顶级期刊Science发表了一项来自波士顿大学工程学院生物医学工程系Laura Lewis教授课题组的研究,他
Science惊人发现:缺氧可以救命?
对大多数生物来说,氧气对于生命至关重要。但生物学是复杂的,希望能够治疗线粒体缺陷疾病的一些研究人员现在提出,反过来有可能也是正确的:剥夺细胞的氧气可能对健康大有益处。尽管这一意外的想法迄今只在细胞和动物身上进行了测试验证,一些科学家已经在考虑降低氧水平是否可以治疗某些罕见但却致命的疾病。 这一
Science重要发现:炎症促进再生
发表在最新一期(11月8日)《科学》(Science)杂志上的一篇报告揭示斑马鱼具有非凡的大脑修复能力秘密在于炎症。斑马鱼大脑的神经干细胞表达了一种炎症信号分子的受体,促使细胞增殖并发育成新神经。 约翰霍普金斯大学神经病学和神经科学教授明国丽(Guo-Li Ming,未参与该研究)说:
Science:跳跃基因如何找到目标?
为了了解转座子如何形成基因组,极其重要的是,要发现它们定向整合(targeted integration)背后的机制。最近,来自法国国家健康与医学研究院病理学实验室的研究人员,与法国CEA-Saclay和美国一个实验室合作,确定了两种蛋白质之间的相互作用,是一个转座子整合到酵母基因组中一个特定区
Science特刊:人体遗传学
DNA用其严谨的精确性,决定了每个人的分子结构,生理性状和健康功能,这也令遗传学成为了最重要的科学之一。9月28日Science杂志以“Human Genetics”为题,探讨了最近几年间人体遗传学领域的最新进展,并介绍了要想真正了解人类本性和疾病,我们所面临的挑战。 在特刊综述中,Jay S
Science关注CRISPR重要新成果
亨廷顿氏病(Huntingtons disease)是由破坏大脑的突变蛋白引起的一种神经系统疾病,早期表现为情绪波动及不可控制的抽搐,最终可发展成痴呆甚至死亡。在美国大约有3万人受累于这一疾病,当前没有治愈的方法。现在一种许多人相信能获得诺贝尔奖的基因编辑新方法,被证实可在小鼠体内有效阻止缺陷蛋
Science关注CRISPR重要新成果
亨廷顿氏病(Huntingtons disease)是由破坏大脑的突变蛋白引起的一种神经系统疾病,早期表现为情绪波动及不可控制的抽搐,最终可发展成痴呆甚至死亡。在美国大约有3万人受累于这一疾病,当前没有治愈的方法。现在一种许多人相信能获得诺贝尔奖的基因编辑新方法,被证实可在小鼠体内有效阻止缺陷蛋
Science医学:无毒抗癌新疗法
来自昆士兰大学的研究人员针对人类乳腺癌开发了一种无毒的“特洛伊木马”疗法,将一种有助于摧毁肿瘤的分子藏在肿瘤为实现自身生长和进展而招募的一种细胞中。这项发表在《科学转化医学》(Science Translational Medicine)上的研究,为通往人类临床试验提供了一个至关重要的踏脚石
Science:免疫细胞杀敌新策略
近日,刊登在国际杂志Science上的一项研究论文中,来自美国罗切斯特大学的研究人员通过研究表示,就好象成群飞翔的鸟儿能够学会如何节约能量,蚂蚁能够开创殖民地来保护蚁王,免疫细胞也会参与协调行为来清除消灭机体中的病毒,比如流感病毒等。 文章中,研究者首次揭示了免疫细胞如何发挥作用来达到其目的地
Science:蚂蚁寻找食物的方法
如果滴一滴糖水放在墙角处,不久以后你就会看到成群结队的蚂蚁直奔着它走过来。事实上,他们是在跟随一种叫做费洛蒙的化学物质。该化学物质是由首先发现这一"美味"的同伴释放出的。通过追寻费洛蒙的轨迹,蚂蚁能够一次次地享用美味的糖水。 然而,最近一项新的研究发现,费洛蒙并不是唯一指导蚂蚁找寻食物的因素:
福建农林大学发表Science文章
福建农林大学,加州大学洛杉矶分校,吉林大学等处的研究人员发表了题为“Photoactivation and inactivation of Arabidopsis cryptochrome 2”的文章,首次解析了生物最古老的光受体之一——隐花色素的工作机制,确定了隐花色素在不同光信号下的活性表现
Science新文章:饮食与长寿
来自Gladstone研究所的科学家们确定了一种低碳、低卡路里饮食――“生酮饮食”(ketogenic diet)能够延缓衰老的新机制。这一基础性发现揭示了这种饮食有可能如何减慢衰老过程,或有一天使得科学家们能够更好地治疗或预防年龄相关的疾病,包括心脏病、阿尔茨海默氏症和多种类型的癌症。研究
【Science特刊】RNA中的信号
6月17日的Science出了一期关于RNA的特刊。RNA与基因表达的分子生物学紧密相关:有形成特定结构的能力;作为信号载体;对自身的调节。例如非编码小分子RNA,已知是基因表达的调控因子,和哺乳动物干细胞基因表达变化相关,而这种变化反过来和胚胎发育过程中细胞命运的决定有联系。 DNA甲基化是
Science揭示癌细胞独特机制
在细胞分裂过程中基因组会被复制成两份拷贝。这一过程发生于称之为“复制叉”的结构中。在肿瘤细胞中,复制叉往往遭到破坏,导致双链DNA断裂。 由瑞士日内瓦大学科学学院教授Thanos Halazonetis领导的一项国际研究,揭示了癌细胞是如何修复受损的复制叉来完成细胞分裂的。这种称之为“
Science揭示惊人的癌症起源
波士顿儿童医院的研究人员第一次在活体动物中,显影了癌症起源于第一个受累细胞的过程并观察了它的扩散。他们的研究工作有可能会改变科学家们认识黑色素瘤及其他癌症的方式,促使开发出一些新的早期治疗方法阻止癌症扎根。相关论文发表在1月29日的《科学》(Science)杂志上。 论文的第一作者、波士顿儿童
-Science:全民医保急诊会增多
去年年底奥巴马被医改问题弄得焦头烂额,最近才有了进一步转机。然而一项由哥伦比亚大学学者Taubman和Baicker发表在Science杂志上的最新研究又为奥巴马医改泼了一盆冷水。研究称全民医保意味着到急诊就诊的次数增多。 这项研究被称作俄勒冈健康保险实验,其目的是为了阐明得到保证的医疗补
Science:共生细菌帮你抗过敏
近日,来自法国巴斯德研究所的研究人员在国际学术期刊science发表了一项最新研究进展,他们发现人体内共生菌群能够调节免疫系统平衡,揭示了共生菌群缺失导致过敏反应产生的具体机制。 人体内栖息着几十亿个共生细菌,每个人体内共生细菌的多样性都不相同。共生细菌在人体许多生理学过程和机制中发挥重要作用
Science揭示小病夺命的根源
尽管我们中的大多数人都能够在一周后从流感中恢复过来,但它也可以是一种非常严重的疾病,甚至在少数病例中致命,医生们找不到原因来预计这种结局。通过分析一个在两岁半时感染严重流感的小女孩的基因组,研究人员发现她携带了一种至今才知的遗传突变,导致了她的免疫系统功能障碍。 更普遍地来说,这些结果表明了遗
Science:海洋动物的“晚餐铃”
在阳光照射的海面下方,海洋的光与暗的交界处存在着一段叫做“黎明水域”(twilight zone)的区域。这一区域在海面下方200米到1000米之间,其中生活着大量的海洋动物。由于该区域没有植物存在,因此大量动物需要向水面方向漫游寻找食物。 如今,研究者们发现这种群体性的迁移活动会产生一种十分
Science:免疫助力细胞重编程
事实告诉我们,急则生变,当受到威胁的时候,就会出现灵活转机。这一原则也许就解释了为什么科学家们在重编程体细胞的实验中会想到病毒,来自美国的这个研究小组报告称,细胞对于病毒的防御性反应也许能令其更容易表达那些平时关闭的基因――包括那些开启炎症,或者在干细胞状态时活跃的基因,这一发现有助于科学家们更
Science新闻:新型的mRNA疫苗
一种新的疫苗策略可使流感疫苗生产更便宜、更安全、更容易。并非采用纯化自病毒的蛋白质,而是利用合成的信使RNA (mRNA)生成疫苗,德国的科学家们证实它能够有效保护小鼠、雪貂和猪对抗流感。“这是一种非常有趣的新方法,”德国马尔堡大学病毒学家Hans- Dieter Klenk(未参与该研
Science:端粒酶的调控
对于所有多次分裂的细胞来说,维持染色体两端端粒(telomere)的长度是至关重要的。一种称作端粒酶(telomerase)的酶可使两端得以延长,以抵消每次染色体拷贝所发生染色体缩短。端粒酶是细胞生存的必要条件,端粒酶功能丧失可导致干细胞自我更新障碍,从而引起诸如先天性角化不良、再生障碍性贫血和
-Science:父亲“原罪”之表观遗传
如果你患有糖尿病、癌症或甚至有心脏问题,或许你应该将其归罪于父亲或甚至祖父的行为或环境。近年来,科学家们已证实甚至在母亲怀上后代之前,父亲的生活经历包括食物、药物、暴露于毒性产物、压力等都可以影响他的孩子、甚至孙子的发育和健康。 然而,尽管科学家们在这一领域已开展了十年的研究工作,对于延续数代
上海交通大学最新Science!
软质材料往往对气体具有高渗透性,因此很难制造出可拉伸的密封。 2023年2月2日,上海交通大学邓涛、尚文、美国北卡罗莱纳州立大学Michael D. Dickey及美国A123系统研发中心Jun Wang在Science 在线发表题为“Liquid metal-based soft, herm
专家解读AI-for-Science专项工作
原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497164.shtm “AI for Science有可能推动我们在下一轮科技革命中走在前沿。”谈及近期科技部、自然科学基金委联合启动人工智能驱动的科学研究(AI for Science)专项部署工作
Science:益生菌无法让人人受益
生活在我们肠道中的有益菌群(肠道微生物组)对免疫系统的发育和功能起重要作用。越来越多的证据表明,某些益生菌(将有益菌导入肠道中去的治疗方法)可以帮助缓解一些肠道疾病,如克罗恩病的某些症状。通过研究克罗恩病遗传风险因子与肠道细菌之间的相互作用,加州理工学院(Caltech)的研究人员发现了某些患者
Science:重磅!血管指导大脑发育
大脑的功能和内环境稳定(homeostasis)依赖于其复杂的细胞网络之间的通信。因此,大脑中不同细胞群体的发育需要在时间和空间上加以协调。在一项新的研究中,来自德国法兰克福大学、美因茨大学、马克斯-普朗克脑研究所和吉森大学的研究人员报道血管在协调大脑内的神经元细胞网络的正常发育中发挥的新功能。
Science:对抗疾病的“超级英雄”
抗生素滥用使耐药性的超级细菌日益增多,这已经成为了全球性的公共健康问题。Salk研究所的科学家们日前提出了一个全新的解决之道,用生活在肠道里的“超级英雄”细菌缓解感染带来的致命副作用。这项研究发表在十月三十日的Science杂志上。 研究人员在小鼠体内发现了一种强大的大肠杆菌,能够通过抑制肌肉
-Science:脑物质影响运动天赋
骑自行车、弹钢琴—你成功学会这些运动技能,也许都要感谢大脑中一种叫髓鞘的物质。美国《科学》杂志发表的一项新研究说,髓鞘可能影响甚至决定着人类的运动天赋。 髓鞘是包裹在神经元轴突外的一层脂类膜结构,为高等脊椎动物所特有。 该研究论文的共同作者、英国伦敦大学学院的李会良博士说,人类学习某些技能尤