1月28日《自然》杂志精选

封面故事: 电脑程序首次战胜职业围棋手 本期封面所示为作为一个电脑芯片嵌入在一块集成电路板上的一张围棋盘。该围棋盘的布局来自2015年10月5日在Fan Hui (黑子)与AlphaGo (白子)之间所进行的一场历史性围棋比赛的最终棋局。这场比赛是在没有让子或让先的游戏中、在19×19的标准大小棋盘上一个电脑程序历史上第一次战胜了一位职业棋手。下棋电脑“深蓝”1997年在一场六局比赛中对战当时的国际象棋世界冠军加里·卡斯帕罗夫的胜利被看成是人工智能发展中的一个重要里程碑。但这之后仍有一个甚至更大的挑战需要应对——古老的围棋运动。尽管经过了几十年的优化,但直到不久前最强的电脑下围棋的水平也仍然只相当于人类业余棋手。AlphaGo上阵了。由Google DeepMind开发的这个程序利用深度神经网络来模仿专业棋手,并通过从和自己对阵的棋局中学习来进一步提高其性能。AlphaGo 对阵其他最强围棋程序的胜率达到了99%,并在一......阅读全文

基因编辑大牛张锋开发出RESCUE技术,可扩大RNA编辑能力

  基于CRISPR的工具彻底改变了我们靶向与疾病相关的基因突变的能力。CRISPR技术包括一系列不断增长的能够操纵基因及其表达的工具,包括利用酶Cas9和Cas12靶向DNA,利用酶Cas13靶向RNA。这一系列工具提供了处理突变的不同策略。鉴于RNA寿命相对较短,靶向RNA中与疾病相关的突变可避

基因组分析揭示等位基因特异RNA编辑现象

  核糖核酸(RNA)编辑是RNA水平一种常见的修饰,是增加基因转录和功能多样性的重要形式。17日,来自中科院昆明动物研究所的消息,由张亚平院士领导的、多个研究机构加盟的团队,在等位基因特异的RNA编辑研究上取得了重要进展。  中科院昆明动物研究所周中银博士介绍,对二倍体生物来说,虽然两个等位基因的

基因组分析揭示等位基因特异RNA编辑现象

核糖核酸(RNA)编辑是RNA水平一种常见的修饰,是增加基因转录和功能多样性的重要形式。17日,来自中科院昆明动物研究所的消息,由张亚平院士领导的、多个研究机构加盟的团队,在等位基因特异的RNA编辑研究上取得了重要进展。 中科院昆明动物研究所周中银博士介绍,对二倍体生物来说,虽然两个等位基

RNA编辑主要类型

①简单编辑,单碱基转变的转录后调节;②插入编辑,插入单个核苷酸或少量核苷酸的丢失,其机制是转录链的跳格;③泛编辑,插入或缺失多个尿嘧啶核苷酸或转录后插入多个胞嘧啶,其机制是编辑序列由外源反义引导RNA( gRNA)提供,gRNA在编辑体(editosome)核蛋白颗粒中与前编辑mRNA配对,鉴别作为

什么是RNA编辑?

RNA编辑(RNA editing)是指转录后的RNA在编码区发生碱基的加入、丢失或转换等现象。RNA编辑产生的“基因”可称为隐蔽基因( cryptogene),其产物的结构不能从基因组DNA序列中推导获得。早在1986年发现锥虫线粒体mRNA转录加工后,其mRNA的多个编码位置上加入或丢失尿苷酸。

PNAS:利用RNA控制CRISPR/Cas9基因编辑

  在过去的几年里,研究人员找到了一种方法利用天然存在的细菌免疫系统CRISPR/Cas9来失活或纠正任何生物体内的特定基因。然而,CRISPR/Cas9持续地发挥基因编辑活性,带来了额外编辑不必要位点的风险。  现在,来自加州大学圣地亚哥医学院、Ludwig癌症研究所和艾希司制药公司(Isis P

基因编辑鼠的构建-Guide-RNA设计和筛选

众所周知,CRISPR/Cas9被业内誉为“基因剪刀”,它可以高效地实现靶基因的编辑,自问世以来就备受关注和青睐。CRISPR/Cas9系统是由CRISPR相关基因和Cas9组成,Cas9核酸酶会在向导RNA(Guide RNA, gRNA)的指引下,在完整基因组上的特定位点完成切割反应,同

孟山都CTO谈基因编辑、RNA干扰与行业并购影响

  Fraley对两公司的合并持乐观态度,并认为这是一次积极健康的合并。通过合并,两者可扩大规模,同时得到更多研发资金,继续保持育种优势。  记者:关于基因编辑的问题。之前有报道说孟山都已经在谈基因编辑的专利问题,很多人猜测孟山都很可能已经有基因编辑的产品在研发,或者是将要推出来,能不能介绍一下基因

概述RNA编辑的现象

  RNA编辑(RNA editing)是新发现的在mRNA水平上遗传信息改变的过程。由于RNA编辑使mRNA中的编码序列与它的基因中的编码序列不一致。研究证明,mRNA中个别碱基的取代和加减,造成mRNA的碱基序列与它的基因的碱基序列不一致,使其仍能参与翻译,所有这一系列的改变不是发生在基因水平上

RNA编辑领域前世今生

  提到基因编辑,我们可能首先想到的是著名学者张锋和Jennifer Doudna博士共同发现的CRISPR基因编辑系统。而提到单碱基编辑系统,我们可能首先会想到Broad研究所著名科学家David Liu和张锋博士等人共同创建的Beam Therapeutics公司,这家初创公司致力于使用基于CR

简述RNA编辑的机制

  编辑一般发生在mRNA的3’端而不在5’端,1988年Kenneth等首次报道了编辑在3'端的现象。他们合成了2种编辑引物和2种未编辑引物。完全编辑的成熟RNA仅能同编辑引物杂交,用PCR检测到了杂交带,它不能杂交到未编辑mRNA上。相反,未编辑RNA仅能同未编辑引物反应。如果编辑是从转

简述RNA编辑的意义

  RNA编辑的生物学意义主要有:  ①校正作用,因4个核苷酸的插入移码,使其肽链的序列和其他生物的相似;  ②调控翻译,通过编辑可以引入或去除起始密码子或终止密码子;  ③扩充遗传信息,经编辑后增加了肽链的编码信息量

基因编辑技术可以编辑所有基因吗

即便当前不能,以后会能的。基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。在过去几年中, 以ZFN (zinc-finger nucleases)和TALEN (transcription activator-like effector nucleases)为代表

关于RNA编辑的基本介绍

  RNA编辑(RNA editing)是指转录后的RNA在编码区发生碱基的加入、丢失或转换等现象。RNA编辑产生的“基因”可称为隐蔽基因( cryptogene),其产物的结构不能从基因组DNA序列中推导获得。 早在1986年发现锥虫线粒体mRNA转录加工后,其mRNA的多个编码位置上加入或丢失尿

RNA编辑如何促进肿瘤生长?

  最近一项新的研究,对于RNA(核糖核酸)编辑在癌症中可能发挥的作用,提供了新的见解。这项研究结果发表在《Scientific Reports》杂志,可以让我们进一步了解参与肿瘤发生和发展的一种新机制,并因此可能在未来带来更好的治疗方案。  在每一个健康的人体细胞中,连接到DNA中的遗传信息,被转

CRISPR的新前沿:编辑RNA

  基因编辑工具CRISPR令科学家们修改DNA的能力发生了革命性的变化,如今,该工具的一种新的版本能对RNA进行靶向修改。编辑RNA而不是DNA有若干优点,例如,它能减轻与DNA相关的在伦理方面的顾虑,它能为科学家在活体生物中提供更为精确的编辑时间框架(如在关键性的发育期中)。在这里,David

关于RNA编辑的分类介绍

  RNA编辑主要类型有:  ①简单编辑,单碱基转变的转录后调节;  ②插入编辑,插入单个核苷酸或少量核苷酸的丢失,其机制是转录链的跳格;  ③泛编辑,插入或缺失多个尿嘧啶核苷酸或转录后插入多个胞嘧啶,其机制是编辑序列由外源反义引导RNA( gRNA)提供,gRNA在编辑体(editosome)核蛋

常兴研究组发现RNA剪接基因编辑的新方法

  2018年10月5日,国际知名学术期刊《分子细胞》在线发表了中国科学院上海生命科学研究院(营养与健康研究院)常兴研究组题为“Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase”的最新研究成果。证明可

大脑RNA编辑位点“辞典”发布

美国西奈山伊坎医学院研究人员对大脑中的数千个位点进行了编目,在这些位点中,RNA在整个人类生命周期中被修饰,这个过程被称为腺苷到肌苷(A-to-I)编辑,其为理解大脑发育的细胞和分子机制以及它们如何影响健康和疾病提供了重要的新途径。在《细胞报告》上发表的论文中,研究团队描述了大脑中RNA编辑的速率如

转录组的重编写:RNA编辑

  前 言   基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA

RNA编辑技术治疗严重罕见病

  肌肉萎缩症目前还没有治愈的方法,患有这种疾病的儿童在早年失去了重要的肌肉力量。根据来自美国西北大学医学院和芝加哥大学的一项最新研究,一种被称为“外显子跳跃(exon skipping)”的RNA编辑技术,在治疗一种罕见而严重形式的肌肉萎缩症的过程中,已经取得初步成效。相关研究结果发表在十月十二日

转录组的重编写:RNA编辑

  基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA的纠正,成为了

转录组的重编写:RNA编辑

前 言基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA的纠

RNA编辑的生物学意义

RNA编辑的生物学意义主要有:①校正作用,因4个核苷酸的插入移码,使其肽链的序列和其他生物的相似;②调控翻译,通过编辑可以引入或去除起始密码子或终止密码子;③扩充遗传信息,经编辑后增加了肽链的编码信息量。

基因编辑:经编程后杀死人细胞中RNA病毒的新技术

  世界上许多最常见或致命的人类病原体都是RNA病毒,比如埃博拉病毒、寨卡病毒和流感病毒,并且大多数都没有美国食品药品管理局(FDA)批准的治疗方法。在一项新的研究中,来自美国麻省理工学院、哈佛大学和布罗德研究所等研究机构的研究人员将一种CRISPR RNA切割酶转变为一种经编程后检测和破坏人细胞中

基因编辑细胞疗法

  17日,Sangamo Therapeutics公司宣布,欧洲药品管理局(EMA)孤儿药委员会(COMP)公布了详细资料,支持授予其在研体外基因编辑细胞疗法BIVV003孤儿药资格,治疗镰刀型细胞贫血病(SCD)。

什么是基因编辑

"公众对转基因担心的并不是基因技术,关键是转基因的“转”,现在通过基因测序研究已发展出基因编辑技术,可根据需要对原来的基因进行重新编辑,它可以不转任何新的基因,也能产生很好效果。中国今后将在进一步开展转基因研究的同时,积极推动基因编辑技术研究"。大妈连基因编辑都知道,真是厉害啊。既然提到这个,我就来

基因编辑crispr原理

ZFNZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription fa

基因编辑的好处

优点:由于基因技术在生物工程中的特殊作用,基因技术革命是继工业革命、信息革命之后对人类社会产生深远影响的一场革命。它在基因制药、基因诊断、基因治疗等技术方面所取得的革命性成果,将极大地改变人类生命和生活的面貌。同时,基因技术所带来的商业价值无可估量。从事此类技术研究和开发企业的发展前景无疑十分广阔。

基因编辑crispr原理

ZFNZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription fa