广州生物院铜催化的氧气活化反应研究取得重要进展

反应过程图 中国科学院广州生物医药与健康研究院朱强博士团队在铜催化的氧气活化反应方面取得重要进展。研究发现使用合理设计的底物,通过铜催化的氧气活化反应,可以实现两类醛基取代的药物优选骨架的合成。该研究成果5月4日以通讯形式在线发表于国际顶级化学期刊Angew. Chem. Int. Ed.上,并被评选为“热点文章”。 这一发现具有重要的学术价值:首先,该反应在构建杂环骨架的同时,利用氧气来源在杂环骨架上引入一个十分重要的官能团——醛基;其次,该反应使用廉价低毒的铜催化剂、清洁的氧气为氧化剂,反应条件温和;此外,该反应具有很高的成键效率和氧化效率,从简单易得的原料,一步得到醛基取代的芳杂环结构。 这一发现还有广泛的应用前景,使用该方法为关键步骤,可以高效地合成神经系统用药奈可吡旦Necopidem,总收率从以往的21%提高到50%。 论文链接 ......阅读全文

广州生物院用铜催化CH键活化合成二苯并呋喃及其衍生物

  二苯并呋喃是许多活性药物分子和天然产物的核心结构单元。但是传统的合成方法存在合成路线长,原子利用率低等诸多缺点。中科院广州生物医药与健康研究院朱强博士研究组利用铜催化的C−H键活化方法,成功合成了一系列的二苯并呋喃及其衍生物,相关成果近期发表在美国化学会期刊《有机化学快报》上 (Org. Let

廉价过渡金属催化领域的研究进展

  近日,南方科技大学理学院化学系副教授舒伟课题组围绕廉价金属催化的选择性合成等绿色精准催化主题进行了系统研究,取得了一系列进展,相关成果发表在Angewandte Chemie、Nature Communications以及ACS Catalysis等化学领域高水平期刊。  α-手性酰胺片段广泛存

甘油磷脂的合成过程

合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。原料来源合成甘油磷脂的原料为磷脂酸与取代基团。磷脂酸可由糖和脂转变生成的甘油和脂肪酸生成

关于甘油磷脂的合成介绍

  合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。  1、原料来源  合成甘油磷脂的原料为磷脂酸与取代基团。磷脂酸可由糖和脂转变生成的

甘油磷脂生成过程

合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。原料来源合成甘油磷脂的原料为磷脂酸与取代基团。磷脂酸可由糖和脂转变生成的甘油和脂肪酸生成

磷脂代谢概述(二)

  (二)甘油磷脂的合成  合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。  1.原料来源  合成甘油磷脂的原料为磷脂酸与取代基团。磷

郑柯课题组氢键持久光敏复合物引发的分子内CN偶联反应

  光诱导有机反应由于具有条件温和,环境友好等优点受到广泛关注。为使其顺利进行,反应体系中通常需要加入能被光激发的催化剂,如铱、钌、有机染料等。最近,通过电子给体-受体复合物(EDA复合物)或光敏的有机激发态中间体引发反应使新型光化学反应开发成为可能(Scheme. 1a)。自1919年报道以来,光

郑柯课题组氢键持久光敏复合物引发的分子内CN偶联反应

光诱导有机反应由于具有条件温和,环境友好等优点受到广泛关注。为使其顺利进行,反应体系中通常需要加入能被光激发的催化剂,如铱、钌、有机染料等。最近,通过电子给体-受体复合物(EDA复合物)或光敏的有机激发态中间体引发反应使新型光化学反应开发成为可能(Scheme. 1a)。自1919年

炔烃在铜的作用下进行加氢烷基化实现了E烯烃的合成

  官能团化烯烃是有机合成的重要中间体,广泛存在于药物分子和其他生物活性化合物中。因此,如何高效合成E型和Z型烯烃一直是有机化学家研究的热点之一。炔烃作为一类廉价易得且用途广泛的结构单元,可通过多种化学反应转化成其他重要中间体。近年来,金属催化炔烃和未活化烷基亲电试剂的加氢烷基化反应已被广泛用于合成

选择性硼氢键活化的铱催化碳硼烷硼基化反应研究获进展

  碳硼烷是由两个CH 和十个BH 顶点组成的笼状分子,被视为苯的三维类似物,具有超芳香性及很好的化学和热稳定性,在生物医药、超分子材料等领域有着重要的用途。例如,利用其单位分子内的高硼含量作为硼中子俘获疗法(BNCT)试剂,利用其高热稳定性用于耐热硅硼橡胶聚合物;其它用途还包括超分子材料、分子机器

上海有机所在烷烃转化方面取得进展

  烷烃价廉量广,是石油和天然气等石化资源的主要成分,目前在合成化学上利用率极低,主要作为燃料使用。发展新型方法将其转化成高附加值的化学品具有重大的意义。然而简单烷烃分子中无导向或活化基团,仅含低极性、高键能惰性C(sp3)-H键和C(sp3)-C(sp3)键,因此对烷烃分子化学键选择性地活化具有高

Nat-Catal“驾驭”氮酸硅醇酯两亲性、构建手性脂肪族β³氨基酸

  硝基烷烃与羰基化合物类似,两者均可在去质子化后与亲电试剂发生有用的(催化)转化(如:Henry -和Michael-型反应)。然而,不同阴离子的甲硅烷基化会存在显著的反应性差异,例如:甲硅烷基化的烯醇化物具有很强的亲核性,并在Lewis酸催化下与各种亲电试剂发生Mukaiyama-型反应;而甲硅

昆明植物所3取代吡咯并吲哚类生物碱合成研究获进展

  3-取代吡咯并吲哚类生物碱是一大类广泛存在于植物、微生物中的次生代谢产物。此类生物碱结构类型多样,生物活性广泛,是理想的药物先导化合物,也可作为发现和阐释新颖生物过程的工具分子。此外,此类生物碱还可作为合成其他更加复杂吲哚类生物碱的关键前体,因此3-取代吡咯并吲哚类生物碱骨架的高效构建一直是合成

太原理工大学研发钐改性的铜基双功能催化剂体系

  氮氧化物和一氧化碳是常见的有毒气体和空气污染物,主要来自机动车尾气等移动源和发电厂等固定源。因此,高效控制氮氧化物和一氧化碳排放迫在眉睫。到目前为止,氨气选择性催化还原耦合一氧化碳氧化技术,因其能够同时脱除两种大气污染物成为当前最优技术之一。研发高效的双功能催化剂是该领域面临的难题。  近日,太

动态动力学不对称酮加成反应有了新进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/2/494076.shtm 手性是自然界的基本属性。发展手性分子的高效精准合成方法对于生命科学、材料科学和新药研究等领域均具有十分重要的意义。含两个连续手性中心的叔醇广泛存在于药物和生物活性天然产物分子中,

纳米金催化肉桂醛选择加氢制肉桂醇

  Producing of cinnamyl alcohol from  cinnamaldehyde over supported gold nanocatalyst  谭媛, 刘晓艳*, 张磊磊, 刘菲, 王爱琴, 张涛  α,β-不饱和醛/酮选择加氢生成不饱和醇是化学工业中一类重要反应,  

多相催化氢化反应在药物合成中的应用

催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中方便、常用、重要的方法之一。 多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。

多相催化氢化反应在药物合成中的应用

催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中方便、常用、重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①

可见光催化NHCBH3的直接活化自由基硼化新策略

  有机硼化合物是杂原子取代有机分子中用途最广泛的一类,在合成化学、材料化学、生命科学等领域都有着广泛应用。与碳相比,硼的正电性更强,这一特性使有机硼化合物在现代合成化学中一直扮演着重要的角色,特别是C-C键的合成中起着至关重要的作用(如Suzuki偶联反应)。  当前,有机硼化合物的合成通常依赖于

叶绿素的稳定性影响因子

光在活体植物中,叶绿素得到了很好的保护,既可以发挥光合作用,又不会发生降解。但离体叶绿素对光照很敏感,光和氧气作用可导致叶绿素不可逆的分解。在自然条件或以胶态分子团存在的水溶液中,叶绿素在有氧的条件下,可进行光氧化而产生自由基,因此一些研究人员认为叶绿素的光氧化降解必需有氧分子参与,而且其降解速率随

梅天胜课题组:电促铑催化碳氢键转化-芳基胺和二氢喹唑啉酮的发散合成

  芳胺和杂环芳胺广泛存在于药物分子、天然产物以及有机功能材料中,如Abilify Maintena、Ibrance与Sprycel等天然产物或者具有生理活性的小分子中就具有芳胺的结构单元。传统上合成芳胺的方法主要有Ullmann偶联反应,Buchwald-Hartwig偶联反应,Chan-Lam偶

周向葛等实现钴催化的萜烯与甲醛和芳烃之间的羟甲基化

  高烯丙基醇及其衍生物不仅是常见的合成中间体,还广泛存在于许多生物活性化合物和天然产物中(Scheme 1)。例如,cryptophycin家族产物显示出对实体瘤的突出活性,pleuromutilins抑制革兰氏阳性病原体的生长,maoecrystal V显示出对HeLa细胞系的潜在选择性,bry

蛋白质的醛基交联具体反应机理

醛基和氨基的反应在热力学上说是很容易发生的,因为生成了一个更稳定的亚胺以及水。因为这是一个亲核取代并消除醛基氧的反应,酸和碱均可催化这个过程。所以在实验室进行这类反应的时候常常通过添加一定量的酸或碱,可以加速这个过程,即便是在室温下也能发生,加热的话可以进一步加速这个过程。那么如果不加酸碱,不加温,

铜基催化剂在万吨氯乙烯工业性装置中应用项目通过鉴定

  国家重大科学研究计划项目“金属高效利用与替代的纳米催化材料”、中国科学院“精细化工绿色化的若干变革技术与产业示范——有毒催化剂的替代技术及产业化”和中国科学院新材料产业基金重点部署项目阶段性研究成果“铜基催化剂在万吨氯乙烯工业性试验装置中应用项目”在山东德州通过了由中国石油和化学工业联合会组织的

哪些有机物与溴反应

1.甲烷和溴发生的是自由基取代反应:所以用的溴必需是纯溴,气态、液态均可,不能是水溶液。只不过纯溴通常是液态的,气态的接触面大易反应;2.乙烯和溴的加成反应:用的溴是气态、液态、水溶液均可,一般用溴的四氯化碳溶液,为了增加溴的溶解量;3. 苯(用溴化铁做催化剂)和溴的取代反应:用的溴是纯溴,不能是水

负载于二氧化硅上的小尺寸氧化亚铜物种

  Small-sized cuprous oxide species on silica boost acrolein formation via selective oxidation of propylene  负载于二氧化硅上的小尺寸氧化亚铜物种促进丙烯选择性氧化生成丙烯醛  郭玲玲, 虞静

大化所芳香杂环化合物不对称氢化反应研究取得新进展

  芳香化合物的不对称氢化是不对称催化领域的前沿课题。近年来,中科院大连化学物理研究所周永贵研究员领导的研究组一直致力于发展新的活化策略,用于芳香化合物的不对称氢化研究。  近日,该研究小组将布朗斯特酸活化简单吲哚进行不对称氢化的策略拓展到容易合成的羟烷基吲哚的不对称氢化中。对于各种取代的

据悉新型木质基复合材料或将取代BPA

  据美国当地媒体报道,在不久的将来,一种更加安全环保的新型木质基复合材料或将成为石油基BPA替代物,甚至完全取代其在塑料领域中的应用。   在美国化学理事会近期(ACS)召开的研讨会上,科学家们对这种新型木质基材料研究现状及其发展前景进行了深入探讨。   “BPA是生产PC(聚碳酸酯)的重要原

用植物基饮食取代肉类和奶制品好处多

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508408.shtm

有机化合物的取代基次序规则

在有机化学中为了对不对称化合物的立体化学关系能有一个合理和简便的表达方式,R.S.英果德、R.C.凯恩和 V.普瑞鲁格等人提出将取代基团按原子序数排列,原子序数最高的放在最前面,最低的放在最后面。其方法称为原子或原子团的优先规则,或称次序规则或顺序规则。在决定原子或基团的优先性时,制定了一定的规定,