匡廷云院士团队携手攻克光系统I三维结构解析
光系统I(Photosystem I,PSI)是执行光合作用光反应的一个重要的超大色素-蛋白复合体。它通过一系列复杂的色素网络捕获太阳能,并通过驱动跨膜电子转移从而将光能转化成化学能,被称作自然界中最高效的光能转化装置。目前,国际上已经解析了原核生物蓝藻PSI以及高等植物豌豆PSI的捕光色素蛋白复合体I(LHCI)高分辨率结构,但关于红藻等从原核生物向真核生物过渡的真核藻类的PSI高分辨率三维结构研究还是一个空白。红藻PSI-LHCI的两种结构状态,A:PSI-3Lhcr;B:PSI-5Lhcr 中国科学院植物研究所研究员、中国科学院院士匡廷云与研究员沈建仁领导的研究组长期从事光合膜蛋白超大复合体的结构与功能研究。近期,研究组通过与清华大学教授、中科院院士隋森芳团队开展合作,利用单颗粒冷冻电镜技术首次解析了红藻PSI核心与捕光天线复合物(PSI-LHCR)的3.63 Å分辨率的三维结构。研究发现,红藻中存在2种PSI-LH......阅读全文
匡廷云院士团队携手攻克光系统I三维结构解析
光系统I(Photosystem I,PSI)是执行光合作用光反应的一个重要的超大色素-蛋白复合体。它通过一系列复杂的色素网络捕获太阳能,并通过驱动跨膜电子转移从而将光能转化成化学能,被称作自然界中最高效的光能转化装置。目前,国际上已经解析了原核生物蓝藻PSI以及高等植物豌豆PSI的捕光色素蛋白
红藻氨酸受体的结构
红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体
红藻氨酸受体的结构
红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体
红藻氨酸的结构和功能
红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海
研究解析硅藻PSIFCPI超级复合物2.38埃分辨率的三维结构
硅藻是海洋中的主要浮游藻类之一,在地球碳氧等元素循环中起重要作用。硅藻含有岩藻黄素、叶绿素c、硅甲藻黄素等与绿色光合生物不同的光合色素,具有特殊的光能捕获、能量传递和光保护机制。 中国科学院植物研究所光合膜蛋白结构生物学团队致力于光合膜蛋白三维结构和功能的研究,2019年,破解羽纹纲硅藻-三角
科学家合作取得光合领域里程碑研究成果
藻胆体(phycobilisome,PBS)是蓝藻和红藻主要的捕光天线,位于类囊体膜基质侧,是迄今为止最大的捕光蛋白复合物。PBS通过内部色素团(bilins)将捕获的光能以极高的效率传递至光系统II(photosystem II,PSII)和光系统I(photosystemI,PSI)的反应中心以
红藻氨酸受体
红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA
红藻氨酸的应用
驱虫剂神经科学研究神经退行性变剂:癫痫建模阿尔茨海默病模型
红藻氨酸的概念
红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破
红藻氨酸的特点
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性发作
什么是红藻氨酸?
红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动
什么是红藻氨酸
红藻氨酸是一种天然存在于某些海藻中的酸。海人酸是一种有效的神经兴奋性氨基酸激动剂,通过激活谷氨酸受体起作用,谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸是由细胞的代谢过程产生的,谷氨酸受体有四种主要分类:NMDA受体、AMPA受体、红藻氨酸受体和代谢型谷氨酸受体。红藻氨酸是一种红藻氨酸受体激动
红藻氨酸的应用
驱虫剂神经科学研究神经退行性变剂癫痫建模阿尔茨海默病模型
假根羽藻重要光合膜蛋白超级复合物结构获解析
日前,中国科学院院士、中科院植物研究所研究员匡廷云、研究员沈建仁带领的团队同济南大学、清华大学的科研人员合作,揭示了假根羽藻一个重要的光合膜蛋白超级复合物——光系统I捕光复合物I(PSI-LHCI)的3.49Å分辨率结构。该研究进一步完善了对光合生物进化过程中光系统结构变化趋势的理解,为人工模
褐藻门、红藻门、金藻门结构与功能观察实验
一、目的要求 掌握三门藻类的基本特征,代表植物的形态构造、繁殖和生活史。 二、实验材料 海带属、水云属、紫菜属、舟形藻属、海藻标本。 三、实验内容和方法 (一) 褐藻门(Phaeophyta) 1.海带(Laminaria japonica) (1
植物所等-绿藻光系统I超级复合物结构解析方面取得进展
光合生物的光系统I(PSI)是一个极高效率的光能吸收和转化系统,几乎每一个吸收的光子都能产生一个电子,其量子转化效率超过90%。因此PSI高效吸能、传能和转能的结构基础受到科学家的广泛关注。目前,原核生物蓝藻、真核生物红藻和高等植物PSI超级复合物结构都已被解析,然而绿藻PSI的高分辨率结构长期
红藻氨酸有哪些特点?
红藻氨酸是一种具有强烈的兴奋作用和致痫作用的兴奋性毒素,是离子型谷氨酸受体的激动剂,其物理性状是无色针状结晶,可溶于水,难溶于乙醇。红藻氨酸通过血脑屏障或颅内局部注射进入脑内,直接与神经元突触后膜的非NMDA受体(离子型谷氨酸受体中的海人酸受体和AMDA受体)结合,产生兴奋性突触后电位,导致痫性
红藻氨酸受体的概念
红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA
红藻氨酸的基本介绍
红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体
如何选择PSI多肽合成仪?
多肽合成仪PSI100 经济型PSI200普及型PSI300小型PSI300M 中型PSI400大型PSI500GMP型PSI600客户定制应用范围教学科研及小量生产高难度,超长肽工厂化生产任选合成范围100mg~60g100mg~2g1g~40g5g~1kg~10kg通道数1~611111合成
Nature子刊:绿藻光系统I高效捕获及传递光能的分子机制
放氧光合作用利用太阳能产生氧气及碳水化合物,为地球上几乎全部生物提供生存的基础。放氧光合生物(包括植物、真核藻类和蓝藻)有两个光系统,分别是光系统I(PSI)和光系统II(PSII)。 植物和藻类中的光系统I是由核心复合物和外周的捕光蛋白复合物(LHCI)组成的多亚基膜蛋白-色素复合物,其通
绿藻门、轮藻门、红藻门、褐藻门鉴定——红藻门的鉴定
实验材料红藻试剂、试剂盒I-Kl 溶液浓 KOH 溶液0.1%亚甲基蓝溶液2%-3%盐酸(或乙酸)溶液仪器、耗材显微镜镊子解剖针载玻片盖玻片滴管培养皿吸水纸实验步骤多为多细胞体,形态多样。光和色素除叶绿素a、b、胡萝卜素和叶黄素外,还含有藻红素和藻蓝素,因而藻体呈紫红色。储藏产物为红藻淀粉。有性生殖
生物物理所-绿藻光系统I高效捕获及传递光能的分子机制
3月8日,Nature Plants 杂志在线发表了中国科学院生物物理研究所常文瑞/李梅研究组与章新政研究组的合作研究成果,题为Antenna arrangement and energy transfer pathways of a green algal photosystem I-LHCI
红藻氨酸的研究与运用
①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible fa
红藻氨酸的研究与运用
①目的:探讨红藻氨酸(kainic acid,KA)致癫痫大鼠海马组织中低氧反应基因血管内皮细胞生长因子(vascular endothelial gowth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、低氧诱导因子1α(hypoxia-inducible
营养学词汇红藻氨酸
红藻氨酸(亦名海人藻酸)是从海人草中提取的一种兴奋神经毒性氨基酸类似物,科研者向大鼠杏仁核内注射红藻氨酸来研究海马的损害过程和癫痫的诱发机制。 红藻氨酸的化学式是C10H15NO4,分子量是213.23。红藻氨酸是兴奋性谷氨酸类似物,它具有确切的神经兴奋和神经毒性。红藻氨酸通过激活谷氨酸受体密集的海
红藻氨酸的基本概念
红藻氨酸又称“海人酸”,是指一种兴奋性神经毒性氨基酸。红藻氨酸的化学名称是2-羧甲基-3-异丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量红藻氨酸注入到脑内,能损毁局部神经元胞体而不伤害神经纤维,它是一种有高度选择性的破坏脑
破解整合酶的三维结构
英国和研究人员在1月31日的《》杂志上报告说,他们合作进行的一项最新研究模拟出的。整合酶在包括艾滋病等逆转录酶病毒中可以找到,并且充当了艾滋病病毒在人体内复制时的“帮凶”。这项重大突破有助于家解决困扰了艾滋病研究领域长达20年的一个难题,从而找到更好的治疗艾滋病的方法。 当艾滋病病毒感染人体时,
基因组的三维结构
摘要: 阐明染色质复杂结构的技术有染色质构象捕获(chromatin conformation capture, 3C)及更高通量的衍生技术4C、5C,这些提供了长距离的染色质相互作用,但不能扩展到整个染色质相互反应组。在2009年末,两种新方法的迸发,有望绘出全基因组范围的相互作用图谱。
大麦叶绿体PSINDH膜蛋白超大分子复合物空间结构
光合作用光反应过程是在一系列镶嵌在光合膜上的蛋白质超分子机器中进行的,通过光驱动光系统II(PSII)和光系统I(PSI)反应中心电荷分离及光合电子传递,将光能转化为化学能(ATP和NADPH),用于暗反应二氧化碳固定。PSI和PSII催化两种类型光合电子传递,分别为线性电子传递和环式电子传递。