CancerDiscovery:PDL1/PD1阻断治疗的全新耐药机制

近年来免疫检查点抑制剂为癌症病人带来了巨大的希望,但是对这些免疫治疗药物的高抵抗率却阻碍了这类药物的使用。为了克服这一问题,需要对产生耐药的机制进行深入研究。最近,来自美国MD安德森癌症中心的研究人员发现肿瘤细胞可通过上调CD38来抵抗免疫检查点抑制剂治疗,并进一步揭示了其获得性耐药机制。 相关研究结果发表于Cancer Discovery。 CD38属于核糖环化酶,广泛表达于免疫细胞及非造血细胞。CD38可以利用NAD+为底物,生成ADP核糖和环ADP核糖。这对细胞外代谢、细胞内Ca2+、细胞粘附和信号传导等具有重要调控作用。 该项研究中,研究人员利用PD-L1/PD-1阻断抗体处理肺癌和黑色素瘤小鼠体内模型,发现5周后肿瘤会产生耐药,12周后药效几乎失效。对肿瘤样品分析后观察到肿瘤的CD38表达显著上调,因此CD38对于获得性耐药的产生可能具有重要作用。 研究人员还揭示了CD38是如何参与肿瘤耐药的。研究人员发......阅读全文

Cancer-Discovery:PDL1/PD1阻断治疗的全新耐药机制

   近年来免疫检查点抑制剂为癌症病人带来了巨大的希望,但是对这些免疫治疗药物的高抵抗率却阻碍了这类药物的使用。为了克服这一问题,需要对产生耐药的机制进行深入研究。最近,来自美国MD安德森癌症中心的研究人员发现肿瘤细胞可通过上调CD38来抵抗免疫检查点抑制剂治疗,并进一步揭示了其获得性耐药机制。  

细菌耐药性与耐药机制概述

1.产生一种或多种水解酶、钝化酶和修饰酶2.抗菌药物作用靶位改变,包括青霉素结合蛋白位点、DNA解旋酶、DNA拓扑异构酶Ⅳ的改变等3.抗菌药物渗透障碍,包括细菌生物被膜形成和通道蛋白丢失4.药物的主动转运系统亢进上述四种耐药机制中,第一、二种耐药机制具有专一性,第三、四种耐药机制不具有专一性。

简述耐药结核病的耐药机制

  多数研究报告提示:耐药的发生与结核杆菌的基因突变有关。总体上是染色体靶基因一个或几个核苷酸突变(表现增加、缺失、替代),造成核苷酸编码错误致氨基酸错位排列,影响药物与靶位酶结合产生耐药。  当前对各种结核药物耐药机制的研究仍处于不断探索阶段,因一个基因突变而产生的耐药为单基因型耐药,因多基因型突

简述多药耐药细菌的耐药机制

  多药耐药性(MDR)系指同时对多种常用抗微生物药物发生的耐药性,主要机制是外排膜泵基因突变,其次是外膜渗透性的改变和产生超广谱酶。最多见的有革兰阳性菌的多药耐药性金黄色葡萄球菌(MDR-MRSA)和耐万古霉素肠球菌(VRE)及肺炎链球菌,革兰阴性菌如肠杆菌科的肺炎克雷伯菌、大肠埃希菌以及常在重症

细菌的主要耐药机制

1.产生灭活抗生素的各种酶1.1 β—内酰胺酶(β-lactamase)  β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的

简述超级细菌的耐药机制

  1.细菌产生灭活酶或钝化酶,破坏抗生素的结构,使其失去活性。  2.改变抗生素作用的靶位蛋白结构和数量,使细菌对抗生素不再敏感。  3.细菌细胞膜渗透性改变,使抗生素不能进入菌体内部。  4.细菌主动药物外排泵作用,将抗生素排出菌体。  5.细菌生物被膜的形成,降低抗生素作用。

肺炎克雷伯菌的耐药机制

  肺炎克雷伯菌(Kpn)是临床分离及医院感染的重要致病菌之一,随着β-内酰胺类及氨基糖苷类等广谱抗菌素的广泛使用,细菌易产生超广谱β-内酰胺酶(ESBLs)和头孢菌素酶(AmpC酶)以及氨基糖苷类修饰酶(AMEs),对常用药物包括第三代头孢菌素和氨基糖苷类呈现出严重的多重耐药性。肺炎克雷伯菌引起的

鲍曼不动杆菌耐药机制

(一)对ß-内酰胺类抗生素的耐药机制    1)质粒介导或染色体突变使细菌产生ß-内酰胺酶通过水解或非水解方式破坏ß-内酰胺环使抗生素失活这是大多数病菌对ß-内酰胺类抗生素产生耐药的主要机制。金属酶属Ambler B类ß-内酰胺酶属于Bush功能分类3群。根据金属ß-内酰胺酶的底物特

HIV耐药性机制新见解

  近日,Dana-Farber癌症研究所的研究揭示了HIV对多种药物产生耐药性的机制,这一发现为开发更有效的治疗方法打开了大门。  如今,已有许多有助于控制HIV感染的药物,包括整合酶链转移抑制剂在内。该药物家族中有四种药物:raltegravir,elvitegravir,dolutegravi

耐药机制详解之β内酰胺酶

  β-内酰胺类抗生素是目前临床抗感染治疗最普遍应用的一类抗生素,随着这类药物的广泛使用(特别是滥用和误用)和致病菌的变迁,产生了病原菌对药物的耐药性问题,而且耐药发生率相当高。细菌产生β-内酰胺酶(β-lactamase)是80%病原菌耐药的原因之一,另外约12%和8%病原菌的耐药分别与细

解锁超级细菌耐药的传播机制

   细菌耐药性主要是由于耐药基因的广泛传播引起的,而多重耐药质粒融合传播,更使耐药基因的传播如鱼得水。  “多重耐药质粒可以携带多个耐药基因,通过接合转移在不同细菌之间传播,从而造成耐药基因的传播。进一步解析耐药基因及其传播机制的关键是要获得完整的质粒图谱。”扬州大学教授李瑞超与香港城市大学合作,

耐药机制详解之β内酰胺酶

β-内酰胺类抗生素是目前临床抗感染治疗最普遍应用的一类抗生素,随着这类药物的广泛使用(特别是滥用和误用)和致病菌的变迁,产生了病原菌对药物的耐药性问题,而且耐药发生率相当高。细菌产生β-内酰胺酶(β-lactamase)是80%病原菌耐药的原因之一,另外约12%和8%病原菌的耐药分别与细菌细胞外膜通

细菌耐药性的病理机制

  1、产生灭活酶:细菌产生灭活的抗菌药物酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着

Nature报道肿瘤细胞耐药新机制

  有一种“臭名昭著”的蛋白质,能够将化疗药物从癌细胞中“泵”出来,还能阻止药物到达中枢神经系统。范德堡大学医学中心的研究人员最近绘制了一副这名“罪犯”“犯罪”时的构象变化。  P-糖蛋白是一种,ATP结合盒(ABC)转运蛋白。ABC转运蛋白是一个膜内在蛋白超家族。它将ATP水解,释放ATP分子中储

肺癌耐药机制及临床诊疗策略制定

  转化医学和分子生物学的发展,揭示了肿瘤驱动性基因突变如何通过不同的信号通道传导机制促进肿瘤的发生和发展,为肿瘤靶向治疗开辟了道路,而紧随靶向治疗之后的耐药问题,也为肿瘤的靶向治疗管理提出了新的挑战。  目前,肿瘤管理往往基于分子诊断的证据基础制定最优的治疗策略。近期,发表在Current Onc

耐药细菌细胞维持防御屏障的机制

由东安格利亚大学、中山大学、徐州医学院等处的研究人员组成的一个科学家小组,朝着解决抗生素耐药这一问题又近了一步。发表在《自然》(Nature)杂志上的一项新研究揭示出了耐药细菌细胞维持防御屏障的机制。新研究结果为开发出新一波通过搞垮细菌的防御墙,而非攻击细菌自身来杀死超级细菌的药物铺平了道路。这意味

四环素的耐药机制

由于四环素类抗生素被长期广泛用于治疗人及动物的细菌感染,导致近年来不断出现耐药菌株。其耐药机制主要有3种:通过外排泵的主动外排四环素(如蛋白质tet A);通过细菌核糖体保护作用(如蛋白质tet M)将四环素从30S亚基上解离;对四环素的酶解作用。

NEJM:下一代测序“助力”免疫疗法,揭秘PD1抗体耐药性!

  9月1日,《新英格兰医学杂志》(New England Journal of Medicine,NEJM)上发表了题为“Unmasking PD-1 Resistance by Next-Generation Sequencing”的文章,讲述了如何借助下一代测序技术揭露PD-1抗体的耐药性。 

Nature发布癌症耐药机制重大发现

  来自蒙特利尔大学免疫学和癌症研究所(IRIC)的Kathy Borden及合作者们,发现了一种促使对一些急性髓性白血病(AML)抗癌药物形成耐药,由此最终导致癌症复发的机制。耐药形成是临床肿瘤学中存在的一个主要问题,也是许多患者癌症复发的原因。  这一发表在《自然》(Nature)杂志上的新发现

Cell子刊:揭开肿瘤细胞的耐药机制

  大约一半的肿瘤都缺失p53基因,它有助于健康细胞防止基因突变。这些肿瘤当中有许多会对化疗药物产生耐药性,化疗药物通过破坏细胞的DNA来杀死它们。  现在,麻省理工学院(MIT)的癌症生物学家已经发现了这一现象是如何发生的:当p53缺失时,一个备份系统会接管,刺激癌细胞继续分裂,即使当它们遭受了广

科学家揭示细菌耐药新机制

近日,暨南大学生命科学技术学院生物化学与分子生物学系研究员孙雪松、教授何庆瑜团队在国家重点研发计划、国家自然科学基金等项目的支持下,研究揭示了细菌耐药新机制。相关成果相继发表于《细胞报告》(Cell Reports)和《危险材料杂志》(Journal of Hazardous Materials)。

科学家揭示细菌耐药新机制

近日,暨南大学生命科学技术学院生物化学与分子生物学系研究员孙雪松、教授何庆瑜团队在国家重点研发计划、国家自然科学基金等项目的支持下,研究揭示了细菌耐药新机制。相关成果相继发表于《细胞报告》(Cell Reports)和《危险材料杂志》(Journal of Hazardous Materials)。

肿瘤细胞多药耐药的产生机制

1、 MDR基因及P-糖蛋白(P-glycoprotein, P-gp)MDR基因在人类有二种:MDR1和MDR2,其中MDR1与肿瘤的多药耐药有关,MDR2的功能不清楚,但MDR1和MDR2基因序列具有较高的同源性。人类MDR1基因位于第7号染色体长臂上,含有28个外显子,内含子与外显子交界符合经

简述四环素的耐药机制

  由于四环素类抗生素被长期广泛用于治疗人及动物的细菌感染,导致近年来不断出现耐药菌株。其耐药机制主要有3种:通过外排泵的主动外排四环素(如蛋白质tet A);通过细菌核糖体保护作用(如蛋白质tet M)将四环素从30S亚基上解离;对四环素的酶解作用。

新型抗白血病药物耐药机制研究

  转录基因的表观调控在肿瘤等疾病的发展过程中起着重要作用。其中,核小体组蛋白赖氨酸N-端残基的乙酰化,对遗传表观基因的调控尤为重要。乙酰化赖氨酸存在于近两千个蛋白质中,参与了许多细胞变化过程。Bromodomains是包含110个氨基酸的蛋白质功能结构域,可选择性识别组蛋白末端乙酰赖氨酸位点,参与

碳青霉烯类抗生素耐药机制

碳青霉烯类抗生素一种非典型β-内酰胺类抗生素,具有抗菌谱广、抗菌活性强以及对β-内酰胺酶稳定以及毒性低等特点,对控制耐药菌、产酶菌感染及免疫缺陷者感染发挥着重要作用。其结构与青霉素类的青霉环相似,不同之处在于噻唑环上的硫原子为碳所替代,且C2与C3之间存在不饱和双键;另外,其6位羟乙基侧链为反式构象

β内酰胺类抗生素的耐药机制

  细菌对β-内酰胺类抗生素耐药机制可概括为:  ① 细菌产生β-内酰胺酶(青霉素酶、头孢菌素酶等)使易感抗生素水解而灭活;  ② 对革兰阴性菌产生的β-内酰胺酶稳定的广谱青霉素和第二、三代头孢菌素,其耐药发生机制不是由于抗生素被β-内酰胺酶水解,而是由于抗生素与大量的β-内酰胺酶迅速、牢固结合,使

卡他莫拉菌的药敏及其耐药机制

卡他莫拉菌一直被认为是呼吸道正常寄居菌群,一般不致病。但近年来的研究表明,该菌可导致多种急慢性感染,如儿童慢性鼻窦炎、中耳炎、脑膜炎、心内膜炎和败血症,现已跃居为小儿呼吸道感染的第3 位致病菌。本菌可产生β-内酰胺酶,使其对抗生素的耐药性较强。一、国内药敏研究现状目前,卡他莫拉菌的致病性已引起国内学

研究发现胰腺癌化疗耐药新机制

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503077.shtm近日,Cell Death & Disease发表了一篇北京协和医院教授王维斌团队的论著文章称,该团队通过巧妙设计的多维度、多类型试验,发现线粒体内膜蛋白STOML2可以抑制胰腺癌细胞

细菌对β内酰胺类抗生素耐药机制

  ① 细菌产生β-内酰胺酶(青霉素酶、头孢菌素酶等)使易感抗生素水解而灭活;  ② 对革兰阴性菌产生的β-内酰胺酶稳定的广谱青霉素和第二、三代头孢菌素,其耐药发生机制不是由于抗生素被β-内酰胺酶水解,而是由于抗生素与大量的β-内酰胺酶迅速、牢固结合,使其停留于胞膜外间隙中,因而不能进入靶位(PBP