拟南芥根毛中线粒体和微丝双标活体实时观察
实验概要本研究用稳定表达微丝标记GFP-FABD2的拟南芥材料,结合线粒体活体标记染料Mitotracker RedCMXRos,对拟南芥根毛和线粒体作了活体动态同步观察。而且利用隐失波显微镜和spinning disc confocal显微镜比较了稳定表达标记线粒体GFP-mito和GFP-FABD2的拟南芥根毛中的线粒体移动的情况;同时还利用多种抑制剂,研究骨架动态对于线粒体移动的影响。主要设备倒置显微镜 (IX81,Olympus)高孔径物镜 (Apo 1003 OHR,NA 1.65,Olympus)实验材料稳定表达GFP-FABD2的拟南芥材料稳定表达Mito-GFP的拟南芥材料将材料培养在固体培养基上,含1/2 MS盐 0.7% 琼脂,22°C,长日照 (光照16 h, 黑暗处理 8 h) 培养4天后观察。实验步骤1. 抑制剂处理 &nbs......阅读全文
拟南芥突变体纯合植株的获得
实验概要本实验利用农杆菌转化侵染野生型拟南芥获得变体纯合植株。实验材料拟南芥(Arabidopsis thaliana, Col-0),培养条件,长日照为16h光照/8h黑暗,22oC;短日照为8h光照/16h黑暗,22oC。实验步骤1. 拟南芥基因组的小量提取 1) 取0.2 g拟南芥叶片,
科学家为模式植物拟南芥绘制“蓝图”
任何生物体的每个细胞都包含完整的遗传信息,或者说是一个生物的“蓝图”,编码所谓的DNA核苷酸构建块序列。但是植物是如何创造出各种各样的组织的呢?比如将光能转化成化学能并产生氧气的叶子,或者从土壤中吸收养分的根?答案就在各自组织细胞的蛋白质模式。科学家为模式植物拟南芥绘制“蓝图”。图片来源:Cha
花序真空渗透法转化拟南芥及其抗性筛选
实验概要本实验利用了花序真空渗透法转化拟南芥,并进行了抗性筛选。主要试剂卡那霉素,YEB培养基,菌株EHA105,1/2 MS液体培养基,表面活性物质L-77 Silwet主要设备摇瓶,摇床,高速离心机,生长室实验步骤1. 将表达载体pBI121::AtMYBl,导入农杆菌EHA105本研究选用农杆
拟南芥种子萌发和非生物胁迫的相关研究
2021年6月15日,Cell Reports在线发表了西班牙萨拉曼卡大学生物系Oscar Lorenzo教授团队完成的题为“Redox feedback regulation of ANAC089 signaling alters seed germination and stress res
拟南芥中应对硫胁迫的硫的逆向过程
长期以来,植物中的主要(次要)代谢途径一直被认为是将主要代谢产物的前体转化为具有生物活性终产物的一种途径。然而,在环境刺激(如括营养胁迫条件)下,植物组织会出现内源性的终产物降解现象。因此,是否可以将专门的代谢物特别是富含氮和硫的代谢物重新整合到初级代谢中以回收投入其中的资源,对植物来说具有普遍
DNA甲基化与拟南芥的免疫力
DNA甲基化有助于拟南芥的免疫力,它动态调控了某些基因的表达,让植物能够抵御细菌感染。近日,一篇在线发表于《PNAS》上的文章阐述了以上研究成果。 美国加州索尔克生物学研究所(Salk Institute for Biological Studies)的研究人员利用MethylC测序鉴
实验室“标配”拟南芥研磨提取核酸引发的讨论
给大家分享的内容是——拟南芥研磨提取核酸。那接下来,就让我们先睹为快,看看这个案例的情况。实验:拟南芥研磨提取核酸实验地点:某大学实验样品:拟南芥实验仪器:TL2020高通量组织研磨仪实验步骤:1、在2ml圆底离心管底放入拟南芥样品,每管样品量不超过单管体积的1/3;2、在离心管中加入3mm硬质不锈
PLoS-Genet:何新建等模式植物拟南芥研究获进展
2014年1月22日,北京生命科学研究所何新建实验室在《PLOS Genetics》杂志在线发表题为“The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA me
通过拟南芥揭示高温下植物基因突变的原理
团队以拟南芥为对象研究多代高温下植物基因突变的原理(扬州大学供图) 近日,扬州大学园植学院教授校金飚和农学院徐辰武在《基因组生物学》期刊在线发表题为“多代高温胁迫下拟南芥全基因组DNA突变研究”的最新研究成果。该研究首次从种群遗传谱系和单粒种子遗传谱系两个层面揭示了长期多代高温下植物的DN
拟南芥RNA核糖甲基化修饰研究方面获进展
3月30日,中国科学院生物物理研究所研究员叶克穷课题组、北京大学现代农学院博士王玉秋和中科院遗传与发育研究所研究员李家洋课题组合作在Nucleic Acids Research上发表了题为Profiling of RNA ribose methylation in Arabidopsis tha
研究揭示拟南芥孤儿基因调节花粉发育的分子机制
开花植物中,花粉的形成以及随后的花粉管生长和受精在植物的育性中具有关键作用。花粉的适当发育和成熟对种子植物的遗传多样性具有重要影响,对农业作物生产产生重要作用。植物中孤儿基因的出现可能是植物不断适应环境的进化结果,其功能可能促进植物的生存。近年来,拟南芥特异性孤儿基因Qua Quine Starch
揭秘拟南芥种子的萌发和胁迫响应的运作机制
2021年6月15日,Cell Reports在线发表了西班牙萨拉曼卡大学生物系Oscar Lorenzo教授团队完成的题为“Redox feedback regulation of ANAC089 signaling alters seed germination and stress res
cDNA宏阵列方法分离拟南芥的臭氧应答基因实验
实验步骤 ##一、 cDNA 宏阵列的样品制备培养基: I : 2 (V7 V ) Gamborg B5 培 养 基(GibcoBRL, Rockville, MD), I : 1000(V /V ) Hyponex肥 料(Hypon
实验室“标配”拟南芥研磨提取核酸引发的讨论
给大家分享的内容是——拟南芥研磨提取核酸。那接下来,就让我们先睹为快,看看这个案例的情况。 实验:拟南芥研磨提取核酸 实验地点:某大学 实验样品:拟南芥 实验步骤:1、在2ml圆底离心管底放入拟南芥样品,每管样品量不超过单管体积的1/3; 2、在离心管中加入3mm硬质不锈钢研磨珠2颗; 3、接下来的
研究发现拟南芥表皮毛时序性发育的分子机理
3月6日,国际学术期刊The EMBO Journal 在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所王佳伟研究组题为A spatiotemporally regulated transcriptional complex underlies heteroblastic dev
PlantScreen表型助力转录组水平amiRNA筛选鉴定拟南芥激素...
PlantScreen表型助力转录组水平amiRNA筛选鉴定拟南芥激素运输功能基因研究信号分子的运输在调节植物生长、发育和环境应答方面起到非常重要的作用。最显著的例子就是植物激素的空间分布控制植物发育模式。以色列特拉维夫大学Eilon Shani研究团队使用amiRNA进行转录组多目标正向遗传筛
拟南芥花粉管苯胺蓝染色方法和试剂
母液1. 冰醋酸2. 乙醇3. 1 M NaOH(氢氧化钠)4. 100 ml 1 M K2HPO4(磷酸氢二钾)5. 100 ml 1 M KH2PO4(磷酸二氢钾)6. 苯胺蓝(Fisher)7. 甘油工作溶液1. 冰醋酸含量为10%的乙醇溶液(固定组织使用)2. 50 mM 偏磷酸钾溶液:4.
在拟南芥生殖细胞DNA复制研究中取得进展
被子植物雄配子发生过程中,单倍体小孢子经历一次不对称有丝分裂(PMI)产生营养细胞和生殖细胞,之后生殖细胞再进行一次对称的有丝分裂(PMII)形成两个精细胞。拟南芥花粉常被看作一个理想的发育生物学模型,这个简单的系统不仅经历了细胞的分裂、分化、细胞命运的决定等重要生物学过程,还涉及大量花粉特异基
拟南芥转录复合物参与调控植物盐害反应机制
在自然界中植物的生长发育往往受到各种环境胁迫(Environmental stresses)的影响,如高温、低温及干旱等。其中土壤的盐碱化(Salinity stress)是限制农作物栽培及产量的重要环境因子,但是人们对植物耐盐害的潜在分子机制仍不十分清楚。WRKY家族是一类植物特有的转
cDNA宏阵列方法分离拟南芥的臭氧应答基因实验(一)
实验步骤 ##一、 cDNA 宏阵列的样品制备培养基: I : 2 (V7 V ) Gamborg B5 培 养 基(GibcoBRL, Rockville, MD), I : 1000(V /V ) Hyponex肥 料(Hyponex 10 : 5 : 10; Hyponex Japan
cDNA宏阵列方法分离拟南芥的臭氧应答基因实验(一)
除 cDNA 微阵列外,基于尼龙膜支持物的 cDNA 宏阵列方法是又一被广泛应用的大规模基因表达数据的收集方法。从新基因的发现到基因表达谱的分析, cDNA 宏阵列被应用于分子生物学研究领域的各个方面。尽 管 cDNA 宏阵列的点阵密度低于微阵列,但由于应用灵敏度较高的同位素标记的 cDNA 探针,
拟南芥研究揭密被子植物阻止多精受精分子机制
三个受体负责阻止多花粉管穿出受精。(瞿礼嘉供图) 1月20日,《科学》刊发北大生命科学学院教授瞿礼嘉实验室研究成果,揭示了模式植物拟南芥通过小肽信号及其受体介导的信号通路防止多精受精的分子机制,即每个胚珠仅允许一根花粉管穿出花柱道的隔膜进入其内进行受精。 正常情况下,
云序生物最新“RNA-甲基化”研究汇总拟南芥篇
关于RNA甲基化修饰的研究成果在Nature,Science,Cell等高分期刊上频频亮相,并一次次刷新人们对生命科学的认知。拟南芥作为植物界中研究RNA甲基化修饰的先行者,许多学者将它作为研究对象,并与最新m6A、m5C RNA甲基化测序技术结合,证实到RNA甲基化广泛存在于拟南芥各个发育期,
cDNA宏阵列方法分离拟南芥的臭氧应答基因实验(二)
11.用 mRNA 纯 化 试 剂 盒(Amersham Biosciences, Piscataway, NJ) 将 Poly.(A )+ RNA从总R N A 中分离出来(见注释5)。####(2) c D N A 文 库 的 构 建1.取1. 5 〜7. 5 μg poly (A )+ R
cDNA宏阵列方法分离拟南芥的臭氧应答基因实验(二)
注意事项1.所有的试剂必须用电阻高于 17. 6 的双蒸水配制。2.提取 RNA 所用的玻璃器具必须于 180°C 烘烤至少 8 h 以灭活 RNase。除缓冲液外的所有溶液都要用 0 •1 % DEPC水 配 制(见注释 3)。 RNase 的污染主要来源于实验人员的手,所以进行 RN A 实验时
研究发现拟南芥调控种子休眠和萌发的新成员
研究种子休眠和萌发的调控机理对于植物生存和农业生产具有重要的理论意义。种子休眠属于数量性状,受环境因素和遗传因子的共同调控。拟南芥DOG1(DELAY OF GERMINATION 1)基因是控制种子休眠数量性状位点(QTL)的主效基因,DOG1功能缺失突变体的种子休眠彻底丧失,并且DOG1相关
我国学者研究发现拟南芥为油菜育种开辟新路径
对于油菜种植者来说,收获油菜种子是他们一年的辛劳获得回报的时刻。然而由于油菜果荚的开裂,他们实际收获的种子往往达不到预期产量。他们更担心收收获时遇到反常气候,因为极端气候变化会导致果荚过早开裂,进一步降低种子产量,从而影响经济收入。因此,他们更倾向于选择抗开裂的油菜品种,这也对于油菜育种家提出了
拟南芥花粉管苯胺蓝染色的仪器和步骤
一、仪器1. 紫外显微镜二、步骤1. 在1.5 ml 离心管里加入250 μl 冰醋酸,将雄蕊浸泡到冰醋酸里至少固定1.5小时。如果需要可将组织过夜固定。2. 将固定完的组织浸泡在1 M 氢氧化钠溶液里过夜处理,是组织软化。3. 用偏磷酸钾洗植物组织三次。(在这个阶段植物组织是易碎的)4. 用200
拟南芥基因研究显示:环境对遗传多样性影响巨大
一项针对多种拟南芥的基因研究表明,环境因素对物种遗传多样性和基因组的影响比之前人们预期的更大。相关论文发表在7月20日的《科学》杂志上。 除了实验室中科学家的“最爱”,世界各地还分布着多种野生拟南芥。它们的生长速度、叶子颜色以及发枝方式都是不同的。在最新的研究中,由德国马普发育生物学研究所(Max
云序生物最新“RNA-甲基化”研究汇总拟南芥篇
关于RNA甲基化修饰的研究成果在Nature,Science,Cell等高分期刊上频频亮相,并一次次刷新人们对生命科学的认知。拟南芥作为植物界中研究RNA甲基化修饰的先行者,许多学者将它作为研究对象,并与最新m6A、m5C RNA甲基化测序技术结合,证实到RNA甲基化广泛存在于拟南芥各个发育期,