手性碳原子的化合物的构型判定R、S构型
R、S构型在楔形透视式观察法中,将排序最后的原子或基团放在离观察者最远的位置,剩余三个原子或基团排序确定手性碳构型:按顺时针方向排列为R-构型;按逆时针方向排列为S-构型。类似地,知道一个化合物分子的费歇尔投影式,可以利用它来确定手性碳化合物的R、S构型。下面分两种情况来讨论。(1)若优序性最小的基团,位于投影式的上方或下方,可以直接从纸平面上判断它的构型。因为,竖线上的基团位于观察者最远的位置,这时优序性较大的三个基团在空间的实际排列形状与它们在投影式中的排列形状是一致的。优序性最小的基团位于下方,直接判断它的构型在(一)式中,-F是优序性最小的基团,它位于投影式的下方。其余各个基团的优序性降序排列为:-I>-Br>-Cl,从图中可以看出按顺时针方向旋转。因此,(一)式为R-构型。根据同样的方法可以判定,(二)式为S-构型。将费歇尔投影式在纸平面上旋转180°得到下图,同理右边为R-构型,左边为S-构型。这也验证了......阅读全文
手性碳原子的化合物的构型判定D、L构型
D、L构型甘油醛的D、L构型1951年,费歇尔采用(+)-甘油醛为标准物,并人为地规定在费歇尔投影式中第二号碳原子C2上的羟基,位于右侧的为D构型,位于左侧的为L构型。所以,D/L构型又称为相对构型。右图为用费歇尔投影式表示的甘油醛的D/L构型,并标出了碳的序号。参照甘油醛的构型的化合物其他对映异构
手性碳原子的化合物的构型判定R、S构型
R、S构型在楔形透视式观察法中,将排序最后的原子或基团放在离观察者最远的位置,剩余三个原子或基团排序确定手性碳构型:按顺时针方向排列为R-构型;按逆时针方向排列为S-构型。类似地,知道一个化合物分子的费歇尔投影式,可以利用它来确定手性碳化合物的R、S构型。下面分两种情况来讨论。(1)若优序性最小的基
手性碳原子的化合物的构型判定苏型与赤型
苏型与赤型苏型与赤型概念来自于糖类化学中的苏阿糖和赤藓糖。它们的费歇尔投影式及名称如下:在丁醛糖的四个旋光异构体中,(I)和(II)、(III)和(IV)呈实物和镜像对映而不重合的关系,各构成一对对映体。而(I)和(III)、(I)和(IV)、(II)和(III)、(II)和(IV)不呈实物和镜像的
石墨炔碳原子杂化类型
碳家族发展历程 碳具有sp3、sp2和sp种杂化态,通过不同杂化态可以形成多种碳的同素异形体,如通过sp3杂化可以形成金刚石,通过sp3与sp2杂化则可以形成碳纳米管、富勒烯和石墨烯等,如下图所示。a金刚石 b石墨 c蓝丝黛尔石 d、e、f足球烯g无定形碳 h碳纳米管 1996年化学诺贝尔奖被授
6键碳原子首获影像证实
传统教科书中,一个碳原子最多只能与4个原子通过电子对结合。但德国柏林自由大学化学家莫瑞兹·马力丝维斯基首次合成并证实,在一种椎体形碳分子内存在一个能与6个原子结合的碳原子。 发表在德国《应用化学》杂志上的这一最新研究将改写教科书。 据《新科学家》杂志网站1月11日报道,新结构是以化合物六甲基
行星系“碎片圆盘”存在碳原子气体
日本理化学研究所、茨城大学等组成的研究小组利用位于智利的阿塔卡玛亚毫米波望远镜(ASTE),观测距地球200光年和63光年的两个行星系碎片圆盘,发现了碳原子气体存在的证据,初步支持了碎片圆盘中的气体来源于“供给说”理论。 星际漂浮的以氢分子为主要成分的气体和尘埃形成了分子云,分子云因自身重力收
差向异构的作用
具两个手性碳原子的L-异亮氨酸,仅在α-碳原子上发生构型变化,部分转化成其非对映体D-别异亮氨酸的过程。含有多个手性碳原子,其中一个手性碳原子的构型相反,其他手性碳原子的构型相同,这样的两种异构体互称差向异构体。两种差向异构体的组成和构造式相同,它们之间不是构造异构体,而是立体异构中的构型异构体。差
异构体的分类
导致旋光异构现象的原因,可以按照旋光异构体的种类来分类,有三种:分子中含有一个手性碳原子图4 乳酸的旋光异构含有一个手性碳原子时,分子必定有手性,有两个旋光异构体,它们具有互为实物和镜像的关系,故也称对映体。对映异构体旋光度大小相等,方向相反,其物理和化学性质极为相似,如乳酸(图4):一个可以使平面
费歇尔投影式的投影规则
为了作出统一的分子构型表达式,费歇尔曾制定了三条投影规则: (1)将碳链放在垂直线上或竖起来,把氧化态较高的碳原子或命名时编号最小(主链中第一号)的碳原子C1放在最上端。 (2)投影时假定手性碳原子放在纸平面上,与垂直线(vertical line)相连的原子或基团(垂直方向的键 /竖键)表
单糖的环状结构介绍
在溶液中,含有4个以上碳原子的单糖主要以环状结构存在。单糖分子中的羟基能与醛基或酮基可逆缩合成环状的半缩醛(emiacetal)。环化后,羰基C就成为一个手性C原子称为端异构性碳原子(anomeric carbon atom),环化后形成的两种非对映异构体称为端基异构体,或头异构体(anomer),
手性的概念及手性物质分离的意义
一、手性及对映异构体的定义:物体与其镜像不能重叠的现象称为手性。 两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性质一样,很难用一般的物理或化学方法区分。但它们对平
手性传感器识别法鉴别手性分子
手性传感器识别法具有简单快捷、高效灵敏和选择性高的特点。电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振
手性的概念及手性物质分离的意义
一、手性及对映异构体的定义: 物体与其镜像不能重叠的现象称为手性。 两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点: 手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性
关于非对映异构体的分类介绍
一、赤式异构体 赤藓糖是含有2个不同手性碳原子的四碳醛糖,它有一对对映体,即D-和L-赤藓糖,其费歇尔投影式的2个-OH位于碳链同侧。其他含有2个手性碳原子的化合物,若分别连有2个相同的基团、第三个基团不同时,其费歇尔投影式的2个相同的基团位于碳链同侧的;即称该分子为赤式异构体,而此种构型称赤
关于单糖的分类介绍
单糖可由三种不同的特征片段来分类:羰基的位置;分子内的碳原子数以及其手性构型。如果羰基在碳链末端分子属醛类,则单糖称:醛糖;若羰基在碳链中间分子属酮类,则单糖称为:酮糖。含有三个碳原子的单糖称为:丙糖;四个碳原子的称为丁糖;五个称为戊糖;六个称为己糖,以此类推。 除在糖分子碳链第一个与最末端的
化合物的手性和旋光性是什么关系
在化学领域,手性和旋光性是描述化合物尤其是有机化合物的两个重要概念。它们之间的关系密切但又有区别,下面将解释这两个概念以及它们的差异,并列出比较它们的表格。一、手性的概念:手性(Chirality)是指一个物体(分子或离子)不能与自己的镜像重合,就如同左手和右手一样,无法完全重合。这种现象通常出现在
手性的概念
手性一词指一个物体不能与其镜像相重合。如我们的双手,左手与互成镜像的右手不重合。手性一词在化学医药领域运用更加普遍,一个手性分子与其镜像不重合,分子的手性通常是由不对称碳引起,即一个碳上的四个基团互不相同。通常用(RS)、(DL)对其进行识别。手性现象在自然界中也广泛存在。手性是自然界的基本属性。
手性分离色谱
是采用色谱技术(TLC、GC和HPLC)分离测定光学异构体药物的有效方法。由于许多药物的对映体(Enantiomer)之间在药理、毒理乃至临床性质方面存在着较大差异,有必要对某些手性药物进行对映体的纯度检查。(一)原理和方法:对映体化合物之间除了对偏振光的偏转方向恰好相反外,其理化性质是完全相同的,
手性高效液相色谱测定有机化合物光学纯度的原理
采用手性固定相或添加了手性试剂的流动相进行手性异构体(对映体)分离的色谱技术。液相色谱和气相色谱都可以进行手性异构体分离。它利用手性固定相或手性流动相中的手性试剂与被测手性异构体分子的空间和特异相互作用的差异,将对映体拆分开。手性色谱在生物和医药领域具有重要应用手性药物编辑化合物中某个碳原子上连接4
赤藓糖的基本信息
含有两个相邻的手性碳原子(见手征性)。自然界尚未发现游离的赤藓糖,D-赤藓糖-4-磷酸酯是碳水化合物酶促转化的中间体。D-赤藓糖为糖浆状液体,有变旋现象;比旋光度+1°→-14.5°(3天,水,C=11 )。L-赤藓糖也为糖浆状液体,有甜味,+11.5°→+ 30.5°(长期平衡,水,C=3)。D-
非对映异构体的定义
彼此不成镜像关系的立体异构体互为非对映异构体。非对映体具有不同的物理性质。如沸点、溶解度、旋光性等都不相同。两个含有多个手性碳原子的手性化合物,如果它们除一个手性碳原子的构型不同,其他结构完全相同,则它们彼此为差向异构体。差向异构体是一种非对映异构体。
D、L构型费歇尔投影式的介绍
1951年,费歇尔采用(+)-甘油醛为标准物,并人为地规定在费歇尔投影式中第二号碳原子C2上的羟基,位于右侧的为D构型,位于左侧的为L构型。所以,D/L构型又称为相对构型。 费歇尔投影式表示的甘油醛的D/L构型,并标出了碳的序号。 其他对映异构体的构型通过与甘油醛进行直接或者间接对比来确定。只
手性高效液相色谱法
手性高效液相色谱法分为直接法和间接法。对映体(enantiomer):在空间上不能重叠,互为镜像关系的立体异构体。立体异构体指分子中的结构基团在空间三维排列不同的化合物。手性药物(chiral,drug):含有手性中心的药物。手性中心即为化合物中某个碳原子上连接4个互不相同的基团时,称该碳原子被称为
手性高效液相色谱法
手性高效液相色谱法分为直接法和间接法。对映体(enantiomer):在空间上不能重叠,互为镜像关系的立体异构体。立体异构体指分子中的结构基团在空间三维排列不同的化合物。手性药物(chiral,drug):含有手性中心的药物。手性中心即为化合物中某个碳原子上连接4个互不相同的基团时,称该碳原子被称为
菲舍尔投影式定义内容
概念辨析有机物的同分异构现象可分成两大类:构造异构和立体异构。其中,立体异构又包括顺反异构、对映异构和构象异构三种情况。而费歇尔投影式主要用于对映异构的书写,对映异构体是分子式相同,构造式相同,但构型不同,互为镜象但不能重合的立体异构体。从构象上分析,费歇尔式都是不稳定的重叠式构象,因此,在进行构象
什么是手性化合物
手性化合物是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物手性当我们伸出双手,双手手心向上时,可以看出
导致旋光异构现象的原因
两个或多个分子由于构型上的差异而表现出不同旋光性能的现象。这些分子互为旋光异构体。导致旋光异构现象的原因有两种:1、分子中含有一个或多个手性原子。含有一个手性碳原子时,有两个旋光异构体,它们具有互为实物和镜像的关系,故也称对映体。对映异构体具有相等的旋光能力,但旋转方向相反,其物理和化学性质极为相似
手性分子的应用
获得手性分子的重要意义一 药物与人类的关系:构成生命体系的生物大分子大多数是以一种对映体形式存在的。故药物与其作用也是以手性的方式进行的,生物体的酶和细胞表面受体是手性的,故对外消旋药物的识别、消化和降解过程也是不同的。手性分子的来源自然界:糖类、氨基酸、生物破、萜类、 甾体化合物不对称有机合成反应
什么是手性分子?
手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分
什么是手性分子?
手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分