华裔青年Cell追随诺奖脚步解析GPCR

来自Salk生物研究所,Scripps研究院等处的研究人员发表了题为“Genetically Encoded Chemical Probes in Cells Reveal the Binding Path of Urocortin-I to CRF Class B GPCR”的文章,破解了一个B类G蛋白偶联受体完整的肽-受体复合物构象模型,这一复合物的结构特征将有助于深入探索受体激活作用机制,以及激动剂与拮抗剂功能差异的分子基础。 这一研究成果公布在Cell杂志在线版上,文章的通讯作者是Salk生物研究所王磊研究员,其早年毕业于北京大学,曾因在试验中成功地用人工方法扩充了生物体的遗传密码,获得了Science杂志评出“世界杰出青年科学家奖”称号。 B类G蛋白偶联受体 G蛋白偶联受体(GPCRs) 是一类与G蛋白有信号连接的受体家族,定位在细胞膜上感知各种细胞外分子,调控着细胞对激素,神经递质的......阅读全文

极低密度脂蛋白受体分布与配体

分布:脂肪细胞、心肌、骨骼肌等(肝内基本没有)。配体:ApoE。结合的脂蛋白:VLDL、β-VLDL、VLDL残基等。VLDL受体的作用是清除血液循环中CM残粒和β-VLDL残粒。

低密度脂蛋白受体的分布与配体

分布:广泛分布于肝、动脉壁平滑肌细胞、肾上腺皮质细胞、血管内皮细胞、淋巴细胞、单核细胞和巨噬细胞等。配体:ApoB100、ApoE(ApoB/ApoE受体、BE受体)。结合的脂蛋白:LDL(主要),VLDL、β-VLDL、LDL残基等(含ApoE)。LDL受体和上述脂蛋白结合将它们吞入细胞内,使细胞

受体与配体结合的特征

受体与配体之间结合的结果是受体被激活,并产生受体激活后续信号传递的基本步骤。在生理条件下,受体与配体之间的结合不通过共价键介导,主要靠离子键、氢键、范德华力和疏水作用而相互结合。受体在与配体结合时,具有饱和性、高亲和性、专一性、可逆性等特性。

受体与配体结合的特征

受体与配体之间结合的结果是受体被激活,并产生受体激活后续信号传递的基本步骤。在生理条件下,受体与配体之间的结合不通过共价键介导,主要靠离子键、氢键、范德华力和疏水作用而相互结合。受体在与配体结合时,具有饱和性、高亲和性、专一性、可逆性等特性。

受体与配体结合的特征

受体与配体之间结合的结果是受体被激活,并产生受体激活后续信号传递的基本步骤。在生理条件下,受体与配体之间的结合不通过共价键介导,主要靠离子键、氢键、范德华力和疏水作用而相互结合。受体在与配体结合时,具有饱和性、高亲和性、专一性、可逆性等特性。

5羟色胺家族部分受体的配体识别和G蛋白选择调控机制

  G蛋白偶联受体(GPCRs)是真核生物中最大的一类膜蛋白,在感知胞外信号和介导胞内信息转导中发挥了重要作用,并参与调控多种生理过程,与人类疾病密切相关,是重要的药物靶标蛋白家族。GPCR与第二信使环磷酸腺苷相关的信号通路中,主要通过刺激型G蛋白(Gs)和抑制型G蛋白(Gi)来区分细胞内不同的信号

缩胆囊素受体识别配体和G蛋白选择性的分子机制被揭示

  中国科学院上海药物研究所蒋轶/徐华强团队、赵强团队、吴蓓丽团队、王明伟/杨德华团队和上海科技大学赵素文团队于Nature Chemical Biology背靠背在线发表了题目分别为 ”Ligand recognition and G protein-coupling promiscuity of

具有偏向性的大麻素受体配体研究进展

  具有偏向性的大麻素受体配体研究进展  大麻素受体是多种疾病的潜在治疗靶标,属于 G 蛋白偶联受体(GPCR)的 A 家族,主要包括大麻素Ⅰ型受体(CB1)和大麻素Ⅱ型受体(CB2),分布在体内不同部位。现有研究多集中于 2 种亚型受体的选择性而非具体信号通路的选择性,但已有研究显示信号通路的选择

肾上腺素受体的多样性和配体--α2型受体晶体结构解析

  人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2A, α2B, α2C, β1, β2和β3)。2007年,β2肾上腺素受体的非激活这是第一个人源G蛋白偶联受体的晶体结构,是G蛋白偶联受体结构解析的重大突

NSMB-:揭示孤儿受体GPR119识别配体的分子机制

   糖尿病、脂肪肝和肥胖症等代谢性疾病已经成为影响人类健康的一大“杀手”,研究显示一些孤儿受体可能成为治疗这些疾病的重要靶点。GPR119又被称为葡萄糖依赖的促胰岛素受体(Glucose-dependent insulinotropic receptor),是G蛋白偶联受体(GPCR)超家族中的一

阐释肾上腺素受体的多样性和配体的选择性——α2型受体...

阐释肾上腺素受体的多样性和配体的选择性——α2型受体晶体结构解析Cell Reports | 阐释肾上腺素受体的多样性和配体的选择性——α2型受体晶体结构解析 人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2

配体配体相互作用特点

中文名称配体-配体相互作用英文名称ligand-ligand interaction定  义泛指不同配体之间的相互作用。如受体上有多个配体结合位点时,一个配体与受体的结合可能影响另一个配体与受体的结合。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)

构建硫氧还蛋白肽适配体组合库实验

实验材料 E.coli MC 1061 (Bio-Rad)硫氧还蛋白表达载体质粒DNA 洗脱液 试剂、试剂盒 DNA 聚合酶DNA 连接酶小牛肠碱性磷酸酶(CIP)限制性内切核酸酶反应缓冲液4dNTPTris·Cl培养基 仪器、耗材 QIAquick 胶回收试剂盒

构建硫氧还蛋白肽适配体组合库实验

实验方法原理 实验材料 E.coli MC 1061 (Bio-Rad)硫氧还蛋白表达载体质粒DNA 洗脱液试剂、试剂盒 DNA 聚合酶DNA 连接酶小牛肠碱性磷酸酶(CIP)限制性内切核酸酶反应缓冲液 4dNTPTris·Cl培养基仪器、耗材 QIAquick 胶回收试剂盒质粒制备试剂盒DNA 合

配体配体相互作用的功能

中文名称配体-配体相互作用英文名称ligand-ligand interaction定  义泛指不同配体之间的相互作用。如受体上有多个配体结合位点时,一个配体与受体的结合可能影响另一个配体与受体的结合。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)

通过膜蛋白受体NMDARs解析小分子与膜蛋白受体作用机制

  近日,中国科学院大连化学物理研究所生物分子结构表征新方法创新特区研究组研究员王方军团队与中科院神经科学研究所研究员竺淑佳团队合作,在N-甲基-D-天冬氨酸受体(NMDARs)-小分子配体相互作用机制分析方面取得新进展,相关结果作为Back Cover在Chemical Communication

G蛋白耦联型受体简介

G蛋白耦联型受体为7次跨膜蛋白,因此亦有人将此类受体称为七次跨膜受体。受体本身不具备通道结构,也无酶活性,它是通过与脂质双层中以及膜内侧存在的包括G蛋白等一系列信号蛋白质分子之间级联式的复杂的相互作用来完成信号跨膜转导的,因此也称促代谢型受体。G蛋白耦联型受体包括多种神经递质、肽类激素和趋化因子的受

G蛋白偶联受体的分类

根据对人的基因组进行序列分析所得的结果,人们预测出了近千种G蛋白耦联受体的基因。这些G蛋白偶联受体可以被划分为六个类型,分属其中的G蛋白耦联受体的基因序列之间没有同源关系。A类(或第一类,视紫红质样受体)B类(或第二类,分泌素受体家族)C类(或第三类,代谢型谷氨酸受体)D类(或第四类,真菌交配信息素

G蛋白耦联受体的分类

A类(或第一类,视紫红质样受体)B类(或第二类,分泌素受体家族)C类(或第三类,代谢型谷氨酸受体)D类(或第四类,真菌交配信息素受体)E类(或第五类,环腺苷酸受体)F类(或第六类,Frizzled/Smoothened家族)其中第一类即视紫红质样受体包含了绝大多数种类的G蛋白耦联受体。它被进一步分为

什么是G-蛋白偶联受体?

中文名称G 蛋白偶联受体英文名称G-protein coupled receptor定  义一种与三聚体G蛋白偶联的细胞表面受体。含有7个穿膜区,是迄今发现的最大的受体超家族,其成员有1000多个。与配体结合后通过激活所偶联的G蛋白,启动不同的信号转导通路并导致各种生物效应。应用学科生物化学与分子生

G蛋白偶联受体的功能

G蛋白偶联受体(G Protein-Coupled Receptors,GPCRs)是一大类膜蛋白受体的统称。

G-蛋白偶联受体的定义

中文名称G 蛋白偶联受体英文名称G-protein coupled receptor定  义一种与三聚体G蛋白偶联的细胞表面受体。含有7个穿膜区,是迄今发现的最大的受体超家族,其成员有1000多个。与配体结合后通过激活所偶联的G蛋白,启动不同的信号转导通路并导致各种生物效应。应用学科生物化学与分子生

G蛋白偶联受体结构介绍

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

G蛋白偶联受体结构介绍

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

G蛋白耦联型受体简介

  G蛋白耦联型受体是指受体和酶或离子通道之间的相互作用通过一种结合GTP的调节蛋白介导完成的。配体与受体结合后通过G蛋白间接作用于酶或离子通道,从而调节细胞的生理活动。  G蛋白耦联型受体为7次跨膜蛋白,因此亦有人将此类受体称为七次跨膜受体。受体本身不具备通道结构,也无酶活性,它是通过与脂质双层中

激活态多巴胺受体D1R和D2R配体选择性和G蛋白选择性机理

  单胺类神经递质是广泛分布在人体内的一类化学信号分子,包括多巴胺(dopamine, DA)、肾上腺素(adrenaline)和五羟色胺(serotonin, 5-HT)等,这些信号分子共同调控人体内包括情绪及记忆在内的多种生理功能并维持机体内环境稳态。多巴胺作为人体内一种重要的单胺类神经递质,通

上海药物所等揭示孤儿受体GPR119识别配体的分子机制

  糖尿病、脂肪肝和肥胖症等代谢性疾病已成为影响人类健康的“杀手”之一。研究显示一些孤儿受体可能成为治疗这些疾病的重要靶点。GPR119又称葡萄糖依赖的促胰岛素受体(Glucose-dependent insulinotropic receptor),是G蛋白偶联受体(GPCR)超家族中的一种孤儿受

G蛋白偶联受体调控中的关键蛋白

  Johns Hopkins大学的科学家发现了一个“脚手架”蛋白,它将复杂的痛觉调控系统中的多种蛋白聚集在一起,包括Homer、蛋白激酶和mGluR,该发现发表在Nature Neuroscience杂志上。这一调控系统与多种神经病和神经性疾病有关,为治疗这些棘手的疾病提供了新靶点。  

如何分辨单齿配体和多齿配体

单齿配体一个配体中只有一个配位原子的配体。多齿配体一个配体中有两个或两个以上配位原子的配体。如二亚乙基三胺( 简写为DEN)和乙二胺四乙酸根(简写为EDTA)。由一定数目的阴离子或中性分子与阳离子(或原子)以配位键形成的复杂分子或离子成为配位个体,含配位个体的化合物称为配合物,而含有一个配位原子的配

配体的定义

配体(ligand,也称为配基)是一个化学名词,表示可和中心原子(金属或类金属)产生键结的原子、分子和离子。一般而言,配体在参与键结时至少会提供一个电子。配体扮演路易斯碱的角色。但在少数情况中配体接受电子,充当路易斯酸。