《基因组研究》:番木瓜或藏人类性别起源秘密

在长达30多亿年的生命进化史上,生命何时出现雌雄之分?这个问题一直困扰着科学家,在 2008年最后一期的世界著名杂志《基因组研究》上,王秀娥和张文立博士发表了《番木瓜原始Y染色体的雄性特异区中DNA甲基化和异染色质化》的研究论文,初步揭示了性染色体的起源变化机制。番木瓜的雄性区域很有可能和人类2亿至3亿年前的Y染色体相似。这种水果Y染色体基因为人类性染色体起源和进化的初始阶段所发生的事件提供了间接证据。 南京农业大学作物遗传与种质创新国家重点实验室王秀娥教授说,番木瓜这种植物不同寻常,因为它有三性——雄株、雌株和雌雄同株。代表它还正处于性别分化的起始阶段。通过它或许能够找到“性别起源”的秘密。 专家在一株雌雄同株的番木瓜身上发现了一条刚刚处于起源阶段的原始性染色体,雄性区域很小,约占该条染色体的10%,说明它是一条初始的性染色体,同时这个雄性区域似乎已经丢失了一些编码蛋白的DNA。这种丢失通常被认为是Y染色体......阅读全文

科学家首次解析肿瘤染色体外DNA的环状结构与功能

  早期研究认为肿瘤中大量扩增的原癌基因存在于染色体上。2017年,来自美国加州大学圣迭戈分校的Paul Mischel教授团队在Nature杂志上指出,它们是以染色体外DNA(extrachromosomal DNA,ecDNA)的形式存在的,但ecDNA的结构和功能一直缺乏直接的证据。  201

研究发现染色体外环状DNA驱动神经母细胞瘤癌基因重构

  近日,纪念斯隆?凯特林癌症中心等科研机构的研究人员在Nature Genetics上发表了题为“Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma”的文章,发现染色体外环状DNA驱动神

开启2020年科研新热点的染色体外环状DNA(eccDNA)

  近期,Nature与Cell相继发表文章讨论染色体外环状DNA(eccDNA),这位超级明星在各家媒体、宣传号上纷纷闪亮登场。一时间eccDNA走在了生物医学研究舞台的最中央,云序生物已经带您领略过eccDNA在这两篇重量级文章中的迷人风采(点击链接:颠覆性发现:癌基因竟不在染色体上---环状D

开启2020年科研新热点的染色体外环状DNA(eccDNA)

  近期,Nature与Cell相继发表文章讨论染色体外环状DNA(eccDNA),这位超级明星在各家媒体、宣传号上纷纷闪亮登场。一时间eccDNA走在了生物医学研究舞台的最中央,云序生物已经带您领略过eccDNA在这两篇重量级文章中的迷人风采(点击链接:颠覆性发现:癌基因竟不在染色体上---环状D

研究开发出植物高效精准大片段DNA操纵及染色体编辑技术

基因组结构变异(SV)是植物遗传多样性的重要来源,也是基因组进化和优异农艺性状形成的重要驱动力。因此,探究如何高效精准地操纵植物基因组结构变异对植物性状改良和农业生物育种具有重要意义。目前,基于CRISPR/Cas的基因组编辑技术在植物性状改良中得到广泛应用。而这些技术的编辑尺度大部分情况下局限于少

如何协调两种酶从染色体上去除RNADNA杂合结构?

  由分子生物学研究所的Brian Luke和Helle Ulrich教授领导的两个研究小组已经破译了如何协调两种酶RNase H2和RNase H1从染色体上去除RNA-DNA杂合结构。  RNA-DNA杂合体对于促进正常的细胞活动(如基因调控和DNA修复)很重要,但过多也有DNA受损的风险,并可

x染色体的染色体结构

研究确认了X染色体上有1098个蛋白质编码基因,有趣的是,这1098个基因中只有54个在对应的Y染色体上有相应功能的等位基因,而且Y染色体比X染色体小得多。在2003年6月完成的详细分析研究报告中指出Y染色体上仅有大约78个基因,Y染色体甚至被戏称为X染色体的“错误版本”。X染色体中大约有10%的基

Y染色体的染色体结构

Y染色体(Y chromosome)是决定生物个体性别的性染色体的一种。男性的一对性染色体是一条x染色体和一条较小的y染色体。在雄性是异质型的性决定的生物中,雄性所具有的而雌性所没有的那条性染色体叫Y染色体。由于Y染色体传男不传女的特性,因此在Y染色体上留下了基因的族谱,Y-DNA分析现在已应用于家

染色体病:结构性染色体畸变

  结构性染色体畸变 这种畸变是在细胞分裂过程中曾有染色体断裂所致。常见的结构异常有缺失、环状染色体、易位、重复、倒位和等臂染色体。  (1)缺失:指染色体丢失一段。即染色体一处断裂,其无着丝粒的一端常丢失,成为末端缺失;染色体两处断裂,可造成中间段的丢失,为中间缺失。由于遗传基因随染色体断片而丢失

如何区分x染色体与y染色体

  X,Y是相对概念,在核型分析时,配对结束后会有两个形态大小有差异的染色体,较大的是x。也可利用细胞学手段,用基因定位,定位x或y的特有基因。

染色体病:结构性染色体畸变

  结构性染色体畸变 这种畸变是在细胞分裂过程中曾有染色体断裂所致。常见的结构异常有缺失、环状染色体、易位、重复、倒位和等臂染色体。  (1)缺失:指染色体丢失一段。即染色体一处断裂,其无着丝粒的一端常丢失,成为末端缺失;染色体两处断裂,可造成中间段的丢失,为中间缺失。由于遗传基因随染色体断片而丢失

用血浆游离DNA全基因组测序对胎儿染色体异常的产前筛查

  利用孕妇血浆游离DNA检测胎儿常见染色体非整倍体(21三体、18三体、13三体)的无创产前筛查具有较高的灵敏度和特异性,已经在临床检测中普遍应用。然而,在产前诊断发现的胎儿染色体异常中,21三体、18三体、13三体等常见的染色体非整倍体只是一部分,另外还存在一些相对罕见的胎儿染色体异常。例如,研

关于检测染色体和染色体组畸变—染色体畸变试验的基本介绍

  染色体畸变试验是检测化学物质影响染色体数量和结构的基本方法。在化学物质安全性评价中常选体外CHL细胞染色体畸变、精原细胞染色体畸变试验等检测化学物质对染色体的影响。为了准确观察诱发的畸变频数,本试验收获细胞的时间应尽量提前至大多数细胞处于染毒后第1次有丝分裂时(Tucker,1996)。对于染色

染色体制备

            实验方法原理 固定阻滞于分裂中期的细胞,在低渗液中膨胀,将细胞滴在载玻片上,染色,观察 [ Rothfels and Siminovitch,1958;Rooney and Czepulkowski,1986 ] 。

染色体制备

实验方法原理 固定阻滞于分裂中期的细胞,在低渗液中膨胀,将细胞滴在载玻片上,染色,观察 [ Rothfels and Siminovitch,1958;Rooney and Czepulkowski,1986 ] 。实验材料 D-PBS0.25%胰蛋白酶对数期的培养细胞秋水仙酰胺试剂、试剂盒 低渗溶

染色体臂内倒位

中文名称臂内倒位英文名称paracentric inversion定  义发生在染色体一条臂上不包含着丝粒的倒位。应用学科遗传学(一级学科),细胞遗传学(二级学科)

染色体臂间倒位

所谓臂间倒位(pericentric inversion),是指染色体的长臂和短臂各发生一次断裂,断片倒转180度后重接,从遗传物质的得失角度看,这种结构变化没有遗传物质的丢失,因此具有臂间倒位染色体的个体一般不具有表型效应,被称为臂间倒位的携带者。很多染色体都可以发生臂间倒位,以9号染色体最为常见

染色体联合

中文名称染色体联合英文名称chromosome association定  义减数分裂时同源染色体间的相互吸引及配对的现象。应用学科遗传学(一级学科),细胞遗传学(二级学科)

染色体制备

一、 人外周血染色体制备 1. 实验原理 人的外周血淋巴细胞培养方法是1960年由Moorhead 提出来的。正常情况下,人外周血小淋巴细胞都处在G1期(或G0期),但在体外给予一定的条件,进行培养,经72 h就可获得大量的有丝分裂细胞。这种取材简易、用血量少的培养方法已被广泛采用。

等臂染色体

有的具有一个着丝粒,有的具有两个着丝粒。在减数分裂中会发生两臂间的联会,为此,由于形成交叉而使形态发生变化,所以无论是一个着丝粒的或两个着丝粒的等臂染色体都是不稳定的。在体细胞分裂中,具有一个着丝粒的,多数是稳定的,而具有两个着丝粒的则是不稳定的。一般认为,具一个着丝粒的等臂染色体的形成经过三个阶段

平衡染色体

中文名称平衡染色体英文名称balance chromosome定  义平衡易位中两个非同源染色体各发生断裂后,互相交换其片段。产生的染色体大多保留了原有基因总数,对基因表达和个体发育一般无严重影响,故称平衡染色体。是由姐妹染色单体交换形成的。应用学科遗传学(一级学科),细胞遗传学(二级学科)

染色体制片

实验概要掌握染色体制片的基本程序。实验步骤1. 取对数生长期细胞一个。2. 将培养基换成10mL DMEM(H) 10%FBS 0.1μg/mL秋水仙素的培养基,处理1~2小时。3. 将细胞培养液倒掉,马上加入3~4mL 0.1%胰蛋白酶,并立即摇晃0.5~1min。当在显微镜下看到分裂相细胞脱壁后

染色体制备

实验方法原理固定阻滞于分裂中期的细胞,在低渗液中膨胀,将细胞滴在载玻片上,染色,观察 [ Rothfels and Siminovitch,1958;Rooney and Czepulkowski,1986 ] 。实验材料D-PBS                                

染色体制备

实验方法原理固定阻滞于分裂中期的细胞,在低渗液中膨胀,将细胞滴在载玻片上,染色,观察 [ Rothfels and Siminovitch,1958;Rooney and Czepulkowski,1986 ] 。实验材料D-PBS0.25%胰蛋白酶对数期的培养细胞秋水仙酰胺试剂、试剂盒低渗溶液醋酸

关于非同源染色体的染色体的介绍

  染色体是细胞核中最重要的组成部分,在细胞分裂的间期,由于染色体分散于细胞核中,故而一般只看到染色较深的染色质,而看不到具一定形态特征的染色体。几乎在所有生物的细胞中,包括噬菌体(病毒)在内,在光学显微镜或电子显微镜下都可以看到染色体的存在。各个物种的染色体都各有特定的形态特征。在细胞分裂过程中,

人类染色体的染色体带的命名

  根据人类细胞遗传学命名的国际体制(ISCN)的规定,每条染色体都以显著的形态特征(着丝粒、染色体两臂的末端和某些带)作界标而区分为若干个区,每个区都含一定数量、一定排列顺序、一定大小和染色深浅不同的带,这就构成了每条染色体的带型。  区和带的命名是从着丝粒开始,向臂的远端序贯编号。"1"是最靠近

关于非同源染色体的染色体组的介绍

  细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部遗传信息,这样的一组染色体,叫做一个染色体组。  由于染色技术的发展,在染色体长度、着丝点位置、长短臂比、随体有无等特点的基础上,可以进一步根据染色的显带表现区分出各对同源染色体,并予以分类和编

什么是染色体畸变呢?染色体畸变有几种?

染色体畸变包括数目畸变和结构畸变两类。这些畸变可发生于常染色体,也可发生于性染色体。以二倍体为标准,染色体出现单条、多条或成倍增减称为染色体数目畸变,其畸变类型有整倍体和非整倍体。结构畸变是指染色体出现各种结构的异常,主要的畸变包括断裂、缺失、重复、易位、倒位、等臂染色体、环状染色体、双着丝粒染色体

关于染色体畸变试验—染色体分析的基本介绍

  观察染色体形态结构和数目改变称为染色体分析。在国外常称为细胞遗传学检验,但这一名称有时广义地包括微核试验和SCE试验,因为这两个试验同样也是在显微镜下观察细胞染色体的改变。  对于结构畸变,一般只观察到裂隙、断裂、断片、微小体、染色体环、粉碎、双或多着丝粒染色体和射体。对于缺失,除染色单体缺失外

染色体的组成

  染色体组型(Karyotype):描述一个生物体内所有染色体的大  小、形状和数量信息的图象。这种组型技术可用来寻找染色体歧变同特定疾病的关系,比如:染色体数目的异常增加、形状发生异常变化等。以染色体的数目和形态来表示染色体组的特性,称为染色体组型。虽然染色体组型一般是以处于体细胞有丝分裂中期的