廻文诗之对称美——《夫妻相思》

夫妻相思 宋·李禺 夫想妻(顺读) 枯眼望遥山隔水, 往来曾见几心知。 壶空怕酌一杯酒, 笔下难成和韵诗。 途路阻人离别久, 讯音无雁寄回迟。 孤灯夜守长寥寂, 夫忆妻兮父忆儿。 妻想夫(倒读) 儿忆父兮妻忆夫, 寂寥长守夜灯孤。 迟回寄雁无音讯, 久别离人阻路途。 诗韵和成难下笔, 酒杯一酌怕空壶。 知心几见曾来往, 水隔山遥望眼枯。 DO YOU UNDERSTAND?......阅读全文

手性分子合成救星——不对称催化

2021年度诺贝尔化学奖被授予德国有机化学家利斯特和美国有机化学家麦克米伦,以表彰他们在“发展不对称有机催化”方面做出的卓越贡献。不对称有机催化深刻地影响了药物研究:它简化了药物合成中的环节、降低了能源消耗,使化学合成更简捷、环保、经济。我们的生活和工业生产都离不开各种化学合成产品,催化剂是化学家用

手性季碳氨基酸不对称合成获进展

  2月18日,从中科院上海药物研究所徐明华课题组传来消息,该课题组自主设计的新型开链结构的简单磷—烯为手性配体,用于铑催化的硼酸对4-芳基-3-羰基-1,2,5-噻二唑类底物及其衍生物的不对称芳基化反应中,成功实现了含季碳手性的二芳基取代的系列1,2,5-噻二唑啉酮类化合物的高对映选择性合成,产物

手性亚砜亚胺催化不对称合成研究取得新进展

  手性亚砜亚胺具碱性氮原子且在极性溶剂中具良好的溶解性,是一类有潜在应用价值的生物电子等排体(图1)。合成此类化合物的主要策略是基于手性底物的立体专一性转化,如手性亚砜的亚胺化、手性亚砜亚胺的氧化和手性亚磺酰胺的S官能团化。近年来,利用过渡金属催化的不对称C-H键活化方式,为合成手性亚砜亚胺提供了

机遇与挑战并存的手性药物不对称催化合成

  手性是指实物与其镜像的一种关系。如同人的双手一样,左手的镜像是右手,二者相似但不能重叠。人们把这种实物与其镜像不能重叠的性质叫做手性。  “手性与人类生命健康和日常生活密不可分。临床上使用的数千种化学药物中就有52%的药物具有手性。在2019年世界畅销的前20种药物中,手性药物14种,占比高达7

研究实现手性光学不对称因子和发光效率同时增强

  圆偏振发光(CPL)材料在3D显示、光学存储、信息加密等领域颇具应用潜力。目前,发展具有高发光不对称因子(glum)的材料是其实际应用的关键。既往研究发现,通过三重态-三重态湮灭(TTA)实现的上转换圆偏振发光比直接激发手性分子的圆偏振发光具有更高的不对称因子。然而,该体系的glum依然有提升的

上海药物所新型手性配体设计及不对称催化研究取得突破

  在金属催化的不对称反应研究中,手性配体是影响反应立体选择性的一个关键因素,因此设计结构简单、合成方便、催化选择性高的手性配体是不对称合成领域有机化学家们一直关注的一个课题。在过去的三十年里,虽然这方面的研究取得了很大的进展,发明了一些催化选择性优秀的手性配体,但大部分结构复杂、合成步骤冗长,发展

研究实现催化不对称构建手性γ,γ偕二芳基羰基化合物

  手性谐二芳基骨架在众多天然产物、药物以及生物活性化合物中广泛存在。目前已有多种方法实现该类骨架的构建。其中铑催化的芳基硼酸对缺电子烯烃的不对称1,4-共轭加成是构建手性谐二芳基化合物最为直接有效的途径,但如何实现高对映选择性构建手性γ,γ-偕二芳基骨架一直是一个挑战性的课题。  中国科学院成都生

化学所基于手性烯烃发展高选择性不对称氢化新催化体系

  烯烃的来源广泛,能够进行丰富多彩的化学转化,同时由于自身良好的稳定性以及与过渡金属之间独特的相互作用,还具备作为配体的重要功能。手性烯烃作为一类新型配体,成功地实现了一些挑战性的不对称催化反应,充分显示出这类配体的重要研究价值和良好应用前景。   在国家自然科学基金委、科技部、中国科学院的支持

成都生物所用不对称催化构建手性偕二芳基甲基硼酸酯

  手性有机硼化合物是重要的蛋白酶抑制剂,也是重要的有机合成试剂。手性二苄基硼酸酯是一类新颖的合成砌块,可用于构建具有生物活性的偕二芳基或三芳基甲基化合物。传统合成该砌块的方法依赖于使用当量的手性底物或手性试剂;迄今为止,利用催化不对称策略合成手性二苄基硼酸酯仍是一个挑战性的课题。  中国科学院成都

上海有机所在不对称催化合成手性膦化合物方面取得进展

  手性膦化合物在不对称催化中是一种被广泛使用的配体,在各类反应,如不对称氢化、烯丙基化、偶联等反应过程中取得了极大的成功,膦配体通过与各种过渡金属配位来调控催化剂在反应中的催化活性和立体选择性,自身也可作为催化剂在各种反应中使用。目前,手性膦化合物的合成多是通过使用外消旋膦化合物与

NiH催化N酰基烯胺不对称氢芳基化合成手性苄胺

  Nat. Commun.:  NiH催化N-酰基烯胺不对称氢芳基化合成手性苄胺  对映体纯手性胺及相关酰胺衍生物是许多药理活性分子的常见结构。与已有的氢胺化反应相比,过渡金属催化的烯胺不对称氢功能化反应为其结构提供了一种补充方法。本文报道了一种NiH催化的N-酰基烯胺的对映体和区域选择性还原氢芳

手性季碳二芳基氨基酸催化不对称合成研究获进展

  手性非天然氨基酸结构广泛存在于天然产物、药物分子和多功能材料中,作为重要合成砌块在有机合成中也有广泛的应用。其中,手性季碳氨基酸因其在药物化学、蛋白结构组学等方面显示出的独特性质而备受化学家们的关注。然而,由于结构的特殊性,一些高效合成手性非天然氨基酸的方法,如不对称氢化,无法用于构建手性季碳氨

固有手性化合物不对称合成与应用研究获新进展

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517129.shtm

固有手性化合物不对称合成与应用研究获新进展

近日,中国科学院广州生物医药与健康研究院研究员朱强、研究员罗爽团队通过钯催化的七元环腙衍生物与溴(氯)化苄进行反应,对映选择性地合成了多种固有手性的三苯并轮烯衍生物。相关研究发表于《化学催化》。手性是很大比例分子的基本几何特性,手性分子广泛应用于药物、农药和功能材料。在过去的几十年里,人们对中心手性

祝介平教授Angew:轴手性3芳基吡咯的催化不对称构建

  近日,瑞士洛桑联邦理工学院祝介平教授报道了第一例轴手性3-芳基吡咯的催化不对称合成。相关工作发表在Angew. Chem. Int. Ed.(10.1002/anie.201812654)上。  轴手性联芳基化合物存在于许多重要的天然产物和药物中,并且是许多配体和催化剂的核心骨架。虽然已经有许多

大化所催化不对称合成手性[n.3.1]双环化合物研究获进展

  近日,中科院大连化学物理研究所功能有机分子与材料研究组(02T2组)胡向平博士等在催化不对称合成手性[n.3.1]双环化合物的研究上取得重要进展。相关研究内容作为研究亮点(Spotlights)发表在最新一期《美国化学会志》上(J. Am. Chem. Soc. 2012, 13

铜催化不对称CN偶联反应构建全碳四级手性中心研究获进展

  中国科学院广州生物医药与健康研究院蔡倩博士课题组在铜催化不对称C-N偶联反应构建全碳四级手性中心研究中取得重要进展,相关成果已于2014年7月15日在《德国应用化学》上在线发表(Angew. Chem. Int. Ed. 2014. DOI: 10.1002/ange.201405575)。  

手性传感器识别法鉴别手性分子

手性传感器识别法具有简单快捷、高效灵敏和选择性高的特点。电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:物体与其镜像不能重叠的现象称为手性。 两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性质一样,很难用一般的物理或化学方法区分。但它们对平

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:        物体与其镜像不能重叠的现象称为手性。          两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:        手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性

手性的概念

手性一词指一个物体不能与其镜像相重合。如我们的双手,左手与互成镜像的右手不重合。手性一词在化学医药领域运用更加普遍,一个手性分子与其镜像不重合,分子的手性通常是由不对称碳引起,即一个碳上的四个基团互不相同。通常用(RS)、(DL)对其进行识别。手性现象在自然界中也广泛存在。手性是自然界的基本属性。

手性分离色谱

是采用色谱技术(TLC、GC和HPLC)分离测定光学异构体药物的有效方法。由于许多药物的对映体(Enantiomer)之间在药理、毒理乃至临床性质方面存在着较大差异,有必要对某些手性药物进行对映体的纯度检查。(一)原理和方法:对映体化合物之间除了对偏振光的偏转方向恰好相反外,其理化性质是完全相同的,

对称共轴的性质

①光轴上的物点,像点也在光轴上;②过光轴的截面内的物点,与其像共面;③过光轴的任意截面性质都是相同的;④垂直于轴的平面,同一面内具有相同的放大率;⑤已知两对共轭面位置及放大率,或已知一对共轭面位置及放大率,加上光轴上的两对共轭点,可以确定理想光学系统的成像。

手性分子的应用

获得手性分子的重要意义一 药物与人类的关系:构成生命体系的生物大分子大多数是以一种对映体形式存在的。故药物与其作用也是以手性的方式进行的,生物体的酶和细胞表面受体是手性的,故对外消旋药物的识别、消化和降解过程也是不同的。手性分子的来源自然界:糖类、氨基酸、生物破、萜类、 甾体化合物不对称有机合成反应

什么是手性分子?

手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分

手性的结构特点

手性广泛的存在于自然界中,在多种学科中表示一种重要的对称特点。如果某物体与其镜像不同,则其被称为“手性的”,且其镜像是不能与原物体重合的,就如同左手和右手互为镜像而无法叠合。手性物体与其镜像被称为对映体(enantiomorph,希腊语意为“相对/相反形式”);在有关分子概念的引用中也被称为对映异构

什么是手性分子?

手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分

拖尾因子,不对称因子和对称因子的区别与联系

1 色谱峰对称性不对称因子(Asymmetry, As for short)和USP拖尾因子(Tailing factor,Tf for short)均可用于衡量色谱峰的对称性,不对称因子的说法更准确,因为色谱峰存在前延、完美对称、拖尾三种形态.一般来说,制药行业以USP拖尾因子作为评测标准,而其他

拖尾因子,不对称因子和对称因子的区别与联系

1 色谱峰对称性不对称因子(Asymmetry, As for short)和USP拖尾因子(Tailing factor,Tf for short)均可用于衡量色谱峰的对称性,不对称因子的说法更准确,因为色谱峰存在前延、完美对称、拖尾三种形态.一般来说,制药行业以USP拖尾因子作为评测标准,而其他

拖尾因子,不对称因子和对称因子的区别与联系

1 色谱峰对称性不对称因子(Asymmetry, As for short)和USP拖尾因子(Tailing factor,Tf for short)均可用于衡量色谱峰的对称性,不对称因子的说法更准确,因为色谱峰存在前延、完美对称、拖尾三种形态.一般来说,制药行业以USP拖尾因子作为评测标准,而其他