《基因组研究》:特定基因拷贝数的不同造就人类特殊性

人类为何如此特殊?美国科学家近日对比研究了人类和其它灵长类动物的基因组,发现这可能是因为人类某些基因的拷贝数与其它动物有很大不同。这一发现将有助于人们对疾病、寿命等展开更深入的研究。相关论文在线发表于7月31日的《基因组研究》(Genome Research)上。 美国科罗拉多大学的James Sikela等人比较了24000多种人类及黑猩猩、大猩猩等8种灵长类动物基因中的DNA。应用比较基因组杂交(CGH)技术,他们总共发现了4000多种表现了种系特异性变化的基因拷贝,而且这个数量还随着进化不断增长。比较起来,人类比其它灵长动物的这种基因要少得多——人类只有84种这种基因,而狐猴则有1180种。 这些具有多个拷贝的基因往往具有很特殊的作用。比如其中一个名为aquaporin 7的基因,人类具有它的五个拷贝,而其它灵长类动物只有两个。研究人员推测,这个基因可能与人类特有的运动性出汗及耐力跑有关。 研......阅读全文

人类ABO血型继承自灵长类祖先

    ABO血型是导致输血时溶血反应发生的决定性因素之一,可能造成溶血性贫血、肾衰竭、休克以至死亡,也是人类中最早被发现的遗传多态性。一项新研究表示,人类ABO血型与其他灵长类动物共有,而且在数百万年前首次于一个共同祖先身上出现。   血型是以血液抗原形式表现出来的一种遗传性状。A

非人类灵长类发音可能引起人类婴儿的认知能力

  一项研究发现,狐猴的发声就像人类说话那样会引起三个月和四个月大的人类婴儿的核心认知能力。此前的研究证明了即便在婴儿开始说话之前,听人类说话能够支持核心认知过程,该过程包括对象归类的形成。Alissa Ferry及其同事报告说,语言与认知之间的联系最初广泛到足以包括非人类灵长类动物的发声。这组

人类干细胞助灵长类心肌再生相关研究

  美澳两国科研人员利用人类干细胞,在动物实验中成功修复了猴子受损的心脏,实现了心肌再生。这一成果有望推动相关技术早日进入临床试验阶段。这项研究成果在线发表在30日的英国《自然》杂志。    利用干细胞分化出心肌细胞从而修复受损心脏组织、治疗心脏病,是干细胞研究领域一大热点。近年来,科研人员已在老鼠

拿下灵长类基因组“矿藏”挖掘主导权

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502057.shtm6月2日凌晨,《科学》以研究专刊形式在线发表8篇论文、《科学进展》在线发表2篇论文,集中报道了我国科学家发起并主导的灵长类基因组计划取得的阶段性突破。该计划由中国科学院昆明动物研究所(

10种灵长类动物基因组研究成果公布

在最新一期的《基因组研究》杂志的网络版上,来自美国科罗拉多卫生科学中心大学和斯坦福大学的研究人员公布了一项大规模基因组研究的结果。 该研究的目的是分析调查10种包括人类在内的灵长类动物之间基因复制数量的差异,剩余九种灵长类动物分别为黑猩猩、大猩猩、倭黑猩猩、猩猩、长臂猿、短尾猿、狒狒、狨和狐猴。

人类外周血染色体制备

实验方法原理人的外周血淋巴细胞培养疗法是1960年由Moorhead提出来的。正常情况下,人外周血小淋巴细胞都处在G1期(或G0期)。但在体外给予一-定的条件,进行培养,经72h就可获得大量的有丝分裂细胞。这种取材简易、用血量少的培养方法已被广泛采用。在培养液中加入植物血凝素(PHA),淋巴细胞受到

人类外周血染色体制备

实验概要人外周血小淋巴细胞,通常都处在G1期(或G0期),一般情况下不进行分裂。如在培养液中加入植物血凝素(PHA),这种小淋巴细胞受到刺激可转化为淋巴母细胞,进入有丝分裂。短期培养后,经秋水仙素处理,低渗和固定,即可得到大量的有丝分裂细胞。人体的1ml外周血内一般含有约1×106~3×106个小淋

人类染色体常规类型

人类染色体可分为两种类型:常染色体(体染色体)和性染色体(异体染色体)。某些遗传特征与一个人的性别有关,并通过性染色体传播。常染色体因此包含其余部分的遗传信息。常染色体和性染色体的复制、有丝分裂和减数分裂过程一致。

人类Y染色体急剧退化

人类Y染色体在全世界的分布比例图   据美国《每日科学》网站7月17日报道,美国宾夕法尼亚州立大学的两位科学家研究发现:Y染色体比X染色体的演化速度快得多,这将导致Y染色体上的基因急剧丢失,照此继续,Y染色体将会完全消失,人类的传宗接代将受威胁。   这个现象由生物学副教授卡特雷纳·玛克瓦(

人类染色体核型分析

实验概要学习和掌握人类染色体核型分析的方法,进一步识别和鉴定人类染色体。实验原理核型(karyotype)一词在20世纪20年代首先由苏联学者T. A. Levzky等人提出。核型分析的发展有三项技术起了很重要的促进作用,一是1952年美籍华人细胞学家徐道觉发现的低渗处理技术,使中期细胞的染

人类外周血染色体制备

一、原理人外周血小淋巴细胞,通常都处在G1期(或G0期),一般情况下不进行分裂。如在培养液中加入植物血凝素(PHA),这种小淋巴细胞受到刺激可转化为淋巴母细胞,进入有丝分裂。短期培养后,经秋水仙素处理,低渗和固定,即可得到大量的有丝分裂细胞。人体的1ml外周血内一般含有约1×106~3×106个小淋

人类染色体的染色体带的命名

  根据人类细胞遗传学命名的国际体制(ISCN)的规定,每条染色体都以显著的形态特征(着丝粒、染色体两臂的末端和某些带)作界标而区分为若干个区,每个区都含一定数量、一定排列顺序、一定大小和染色深浅不同的带,这就构成了每条染色体的带型。  区和带的命名是从着丝粒开始,向臂的远端序贯编号。"1"是最靠近

迄今为止规模最大的灵长类基因组调控元素研究

  虽然每个生物体都有一个独特的基因组,一个单一的基因序列,但每个个体都有许多表观基因组。表观基因组由化合物和蛋白质组成,它们可以与DNA结合并调节基因活动,可以激活或失活这些化合物和蛋白质,也可以产生器官或组织特异性蛋白质。由于它是一种高度动态的材料,它可以提供大量的信息来阐明组成身体的各种组织和

Nature封面文章:测序长臂猿基因组

  在完成了对长臂猿(gibbon)基因组的测序和分析之后,科学家们现在更多地了解了这一小型猿类具有快速染色体重组率的原因,提供的一些信息拓宽人们了对于染色体生物学的理解。染色体是细胞功能以及遗传信息跨代传递的基础。染色体结构和功能也与许多的人类遗传疾病,尤其是癌症密切相关。  来自俄勒冈健康与科学

人类染色体的主要类型

人类染色体可分为两种类型:常染色体(体染色体)和性染色体(异体染色体)。某些遗传特征与一个人的性别有关,并通过性染色体传播。常染色体因此包含其余部分的遗传信息。常染色体和性染色体的复制、有丝分裂和减数分裂过程一致。

人类细胞有多少对染色体?

人类细胞有 23 对染色体(22 对常染色体和一对性染色体),即每个细胞共有 46 个染色单体。除此之外,人类细胞还有数百个线粒体染色体拷贝。人类基因组的测序提供了关于每条染色体的大量信息。

人类染色体的分类介绍

  人类染色体可分为两种类型:常染色体(体染色体)和性染色体(异体染色体)。某些遗传特征与一个人的性别有关,并通过性染色体传播。常染色体因此包含其余部分的遗传信息。常染色体和性染色体的复制、有丝分裂和减数分裂过程一致。  人类细胞有 23 对染色体(22 对常染色体和一对性染色体),即每个细胞共有

人类染色体的临床应用

  细胞核中染色质的性别差异称为核性别(nuclear sex)。染色质在临床上的应用主要有  两方面:其一,临床上疑为性染色体异常的患者,可检查患者的间期细胞的性染色质,作出初步诊断。例如:Turner综合征患者(核型为45,X),X染色质和Y染色质均阴性,而47,XXY患者,X和Y染色质均 阳性

简述人类染色体的类型

  人类染色体可分为两种类型:常染色体(体染色体)和性染色体(异体染色体)。某些遗传特征与一个人的性别有关,并通过性染色体传播。常染色体因此包含其余部分的遗传信息。常染色体和性染色体的复制、有丝分裂和减数分裂过程一致。  人类细胞有23对染色体(22对常染色体和一对性染色体),即每个细胞共有46个染

人类全基因组测序计划

  全基因组测序是对未知基因组序列的物种进行个体的基因组测序。 1986年, Renato Dulbecco是Z早提出人类基因组测序的科学家之一。他认为如果能够知道所有人类基因的序列,对癌症的研究将会很有帮助。美国能源部(DOE)与美国国家卫生研究院(NIH),分别在1986年与1987年加入人类基

人类基因组概述

  一、细胞核基因组  每条染色体含1个DNA分子,1个细胞的全部遗传信息(基因)都编码在线状的DNA分子上。由于每个体细胞中有2套染色体(2n),故所含的DNA是由两个基因组(genome)构成。每个单倍体基因组约含3.2×109bp。人类基因的平均长度为1-1.5kb,所以基因组以足以编码1.5

《基因组研究》:特定基因拷贝数的不同造就人类特殊性

人类为何如此特殊?美国科学家近日对比研究了人类和其它灵长类动物的基因组,发现这可能是因为人类某些基因的拷贝数与其它动物有很大不同。这一发现将有助于人们对疾病、寿命等展开更深入的研究。相关论文在线发表于7月31日的《基因组研究》(Genome Research)上。 美国科罗拉多大学的James Si

猕猴早期胚胎发育研究获进展

   日前,中科院昆明动物所郑萍课题组与中科院马普计算所韩敬东课题组合作,研究揭示了 非人灵长类动物(如猕猴)较小鼠更适合于研究人类早期胚胎发育调控机制。该成果在线发表《基因组研究》。  已知灵长类的早期胚胎与小鼠比较,具更高的染色体异常发生率及胚胎发育失败率,但机制并不清楚。  科研人员绘制了首个

人类基因全测序完成!最后的Y染色体的组装和分析完成

《自然》23日发表的两篇论文公布了人类Y染色体的组装和分析,Y染色体也是最后完成全测序的人类染色体。这项全球100多名科学家参与的研究填补了当前Y染色体参考的诸多空白,带来了对不同人群演化和变异的见解。人类Y染色体由于结构复杂一直很难测序和组装。超过一半的Y染色体在当前的人类参考基因组组装中缺失,导

猕猴早期胚胎发育研究获进展

  日前,中科院昆明动物所郑萍课题组与中科院马普计算所韩敬东课题组合作,共同完成了题为Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double s

人类染色体的常见疾病

  因先天性染色体数目异常或结构畸变而引起的疾病,称为 染色体病(chromosome disease)。人类的单倍体染色体组上约有结构基因40000个。平均计算,每条染色体约由上千个基因。各染色体上的基因有严格的排列顺序,各基因间的毗邻关系也是较恒定的。所以染色体如果发生数目异常,甚至是微小的结构

人类染色体组型分析实验

实验方法原理人类的体细胞为二倍体,具有46条染色体(图13-1)。女性为46,XX(图13-2);男性为46,XY,配子为单倍体,含有23条染色体。根据着丝点的位置,可将人类染色体分为3类,即中部着丝点染色体、亚中部着丝点染色体、近端部着丝点染色体。在染色体未经显带处理的情况下,很难全部识别每一条染

人类染色体结构畸变的类型

染色体结构畸变(structural aberrration)是染色体或染色单体断裂和重接而形成各种类型重组的结果。(一)缺失(deletion) 即染色体的部分片段丢失,包括末端缺失和中间缺失。末端缺失是指染色体发生一次断裂后,无着丝粒的片段丢失,即染色体的长臂或短臂末端片段丢失。中间缺失

人类染色体组型分析实验

实验方法原理 人类的体细胞为二倍体,具有46条染色体(图13-1)。女性为46,XX(图13-2);男性为46,XY,配子为单倍体,含有23条染色体。根据着丝点的位置,可将人类染色体分为3类,即中部着丝点染色体、亚中部着丝点染色体、近端部着丝点染色体。在染色体未经显带处理的情况下,很难全部识别每一条

携带人类自闭症基因的非人灵长类动物模型建立

   1月26日,《自然》期刊在线发表了题为《MECP2转基因猴的类自闭症行为表征与种系传递》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心、中国科学院上海生命科学研究院神经科学研究所仇子龙研究组与神经所苏州非人灵长类研究平台孙强团队合作完成。该研究通过构建携带人类自闭症基因MECP2的