上海有机所等在手性芳香螺缩酮化合物合成与应用中获进展

手性芳香螺缩酮是一些天然产物、生物活性化合物和手性配体的重要结构单元,虽然已有一些合成方法报道,但如何直接通过催化过程对映选择性地获得手性芳香螺缩酮一直没有可行的方法。 上海有机所金属有机化学国家重点实验室丁奎岭课题组运用他们发展的SpinPhox/Iridium(I)催化剂(Angew. Chem. Int. Ed.2009, 48, 5345-5349),首次实现了通过α, α’-二(2-羟基亚芳基)酮的不对称催化氢化—缩酮化反应合成芳香螺缩酮化合物的方法(Angew. Chem. Int. Ed. 2012, 51, 936-940)。初步研究表明,手性铱络合物在该反应中具有双重作用:一是催化C=C双键的不对称氢化,二是促进反应中间体的缩酮化过程。此方法已被成功地应用于芳香螺缩酮骨架的手性双膦配体(SKP)的合成中。该工作发表后,德国化学家Reissig教授在《德国应用化学》杂志的Highlights......阅读全文

张国柱课题组:唑类化合物的不对称烷基化

  导读  近日,上海有机化学研究所张国柱课题组在Angew. Chem. Int. Ed. 上发表论文,报道了通过直接C-H官能团化实现唑类化合物与1-芳基烷基溴化物的不对称烷基化反应。在蓝光激发下,铜(I)/咔唑基双恶唑啉(CbzBox)催化体系具有良好的反应性和高的立体选择性,从而可高效的构建

硕博课题组合作高效筛选具有抗肿瘤活性的化合物

  近期,Cell出版社子刊iScience发表了中科院上海药物所张翱课题组和陆晓杰课题组协作完成的基于C–N键切断构建多样性碳杂键的最新科研成果。  碳杂键(如C–O、C–N、C–S、C–Se、C–Si、C–Ge、C–Sn等)是有机分子中最常见的化学键,其构建和切断是合成天然产物、药物分子、功能材

林国强院士与冯陈国课题组实现烯酮和亚胺不对称烯基化

  近日,中国科学院上海有机所林国强院士和上海中医药大学冯陈国课题组通过芳基至乙烯基的1,4-铑迁移实现了烯酮和亚胺的不对称烯基化,该成果发表在近期Angew. Chem. Int. Ed.上(DOI:10.1002/anie.201813585)。  铑催化的有机硼试剂与缺电子双键的对映选择性加成

研究实现催化不对称构建手性γ,γ偕二芳基羰基化合物

  手性谐二芳基骨架在众多天然产物、药物以及生物活性化合物中广泛存在。目前已有多种方法实现该类骨架的构建。其中铑催化的芳基硼酸对缺电子烯烃的不对称1,4-共轭加成是构建手性谐二芳基化合物最为直接有效的途径,但如何实现高对映选择性构建手性γ,γ-偕二芳基骨架一直是一个挑战性的课题。  中国科学院成都生

上海有机所在不对称催化合成手性膦化合物方面取得进展

  手性膦化合物在不对称催化中是一种被广泛使用的配体,在各类反应,如不对称氢化、烯丙基化、偶联等反应过程中取得了极大的成功,膦配体通过与各种过渡金属配位来调控催化剂在反应中的催化活性和立体选择性,自身也可作为催化剂在各种反应中使用。目前,手性膦化合物的合成多是通过使用外消旋膦化合物与

芳香杂环化合物的不对称氢化反应研究取得新进展

吲哚类物质的不对称氢化反应示意图  芳香化合物的不对称氢化,不仅要破坏芳香性,而且需要一次氢化多个不同类型的双键,是氢化领域具有挑战性的课题。近年来,中科院大连化学物理研究所周永贵研究员领导的研究组一直致力于发展用于芳香化合物的不对称氢化的新策略,并成功发展了两类用于含氮芳香化合物的

大化所芳香杂环化合物不对称氢化反应研究取得新进展

  芳香化合物的不对称氢化是不对称催化领域的前沿课题。近年来,中科院大连化学物理研究所周永贵研究员领导的研究组一直致力于发展新的活化策略,用于芳香化合物的不对称氢化研究。  近日,该研究小组将布朗斯特酸活化简单吲哚进行不对称氢化的策略拓展到容易合成的羟烷基吲哚的不对称氢化中。对于各种取代的

固有手性化合物不对称合成与应用研究获新进展

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517129.shtm

上海有机所在中环化合物的不对称合成方面取得进展

  环状化合物在现代有机化学中占有着重要的地位。环状结构广泛存在于各种天然产物和具有重要生理活性的分子中,因此,对于这类化合物的合成是极其重要的。到目前为止,化学家们已经发展了大量的方法合成小环化合物(三—六元环),例如Diels–Alder反应和其它环加成反应等。对于大环化合物(≧十元环)同样也有

上海有机所在中环化合物的不对称合成方面取得进展

  环状化合物在现代有机化学中占有着重要的地位。环状结构广泛存在于各种天然产物和具有重要生理活性的分子中,因此,对于这类化合物的合成是极其重要的。到目前为止,化学家们已经发展了大量的方法合成小环化合物(三—六元环),例如Diels–Alder反应和其它环加成反应等。对于大环化合物(≧十元环)同样也有

成都生物所吲哚类化合物的不对称还原合作研究取得进展

  反应过程  手性吲哚啉是天然产物和一些药物分子中普遍存在的主体骨架,因此对吲哚啉及其衍生物的高对映选择性合成方法研究一直是有机化学和药物化学研究的热点之一。直接对吲哚类化合物进行不对称催化还原是合成手性吲哚啉的一种最直接有效的方法,但适用于该方法的催化体系几乎全部为过渡金属催化剂

固有手性化合物不对称合成与应用研究获新进展

近日,中国科学院广州生物医药与健康研究院研究员朱强、研究员罗爽团队通过钯催化的七元环腙衍生物与溴(氯)化苄进行反应,对映选择性地合成了多种固有手性的三苯并轮烯衍生物。相关研究发表于《化学催化》。手性是很大比例分子的基本几何特性,手性分子广泛应用于药物、农药和功能材料。在过去的几十年里,人们对中心手性

厦门大学龚磊课题组可见光驱动铜催化不对称合成新进展

  厦门大学化学化工学院龚磊课题组在可见光驱动手性铜催化非环亚胺的不对称α-胺基烷基化研究中取得进展,相关结果“Photocatalytic enantioselective α-aminoalkylation of acyclic imine derivatives by a chiral cop

郝小江课题组发现抗阿尔茨海默病先导化合物

  阿尔茨海默病(Alzheimer’s disease,AD),又称早老性痴呆症,是发生在老年期的一种常见的神经退行性疾病,在临床上尚缺乏有效的AD治愈方法或药物。近年来,针对AD的新药潜在靶点探索及开发作用于潜在新药靶点的药物是医药企业、科研院所探索的方向。  中国科学院昆明植物研究所植物化学生

大化所芳香杂环化合物的不对称氢化反应研究取得新进展

  近日,中科院大连化学物理研究所手性合成课题组(201组)周永贵研究员和樊红军研究员合作,首次实现了简单吡咯的不对称氢化反应。   吡咯氢化产物是重要的有机合成中间体和生物活性化合物的结构单元。不对称氢化吡咯及其衍生物是获得这类化合物最直接、高效的方法。近年来,周永贵研究员领导的手性合成课题组(

商丘师院合成磷中心手性膦化合物

  近日,商丘师范学院教授刘澜涛课题组利用催化不对称碳氢键活化的方法,合成高光学纯度的磷中心手性膦化合物,相关研究发表于美国化学会的《有机化学通讯》上。  手性膦化合物是不对称催化中最为重要的配体和有机小分子催化剂之一,以手性膦化合物为配体的催化不对称氢化反应已经应用于多种手性药物生产。由于手性中心

许国旺课题组提出基于“质谱”糖苷类化合物注释新方法

近日,我组在糖苷类化合物规模化注释方面取得新进展。通过构建in silico苷元库和糖基/酰基-糖基碎裂模式库,以及发展利于苷元离子检出的LC-HR MS/MS分析条件,建立了苷元离子的高通量识别方法以及高效去除假阳性候选结果的方法,并开发了相应的糖苷类化合物规模化注释程序plantMS2(http

大化所催化不对称合成手性[n.3.1]双环化合物研究获进展

  近日,中科院大连化学物理研究所功能有机分子与材料研究组(02T2组)胡向平博士等在催化不对称合成手性[n.3.1]双环化合物的研究上取得重要进展。相关研究内容作为研究亮点(Spotlights)发表在最新一期《美国化学会志》上(J. Am. Chem. Soc. 2012, 13

首次实现共轭烯炔的高效不对称氢化

  过渡金属催化不对称氢化反应是合成手性化合物最为高效且实用的方法之一,因其重要科学意义和巨大社会价值而在2001年获得了诺贝尔化学奖。但是,迄今为止的大多数相关研究主要局限于对映选择性氢化含有一个不饱和键的底物,对涉及多种不饱和键底物的同时化学/对映选择性氢化研究相对较少。众所周知,碳碳三键的还原

手性季碳氨基酸不对称合成获进展

  2月18日,从中科院上海药物研究所徐明华课题组传来消息,该课题组自主设计的新型开链结构的简单磷—烯为手性配体,用于铑催化的硼酸对4-芳基-3-羰基-1,2,5-噻二唑类底物及其衍生物的不对称芳基化反应中,成功实现了含季碳手性的二芳基取代的系列1,2,5-噻二唑啉酮类化合物的高对映选择性合成,产物

福建物构所硫属红外非线性光学化合物研究获进展

福建物构所硫属红外非线性光学化合物研究获进展  硫属化合物体系是无机红外非线性光学(NLO)晶体材料的研究热点。在国家自然科学基金创新群队、重大研究计划培育项目和中科院重要方向项目等支持下,福建物质结构研究所中科院光电材料化学与物理重点实验室陈玲研究员领导的课题组合成了新颖结构的稀土

成都生物所β氨基硝基烯烃的不对称还原研究取得突破

     反应过程图   手性β-胺基硝基烷烃是一类重要的手性化合物,它不仅是手性1, 2-二胺的直接前体,同时还可以转化为手性α-胺基羰基化合物。理论上讲,对β-胺基硝基烯烃进行不对称催化还原是合成手性β-胺基硝基烷烃化合物最简便直接的一种方法。然而,由于硝基官能团的存在,致使该

镍催化二级膦氧化物的不对称烯丙基化反应

  过渡金属催化的1,4-加成、[2+2+2]、关环复分解、C-H键活化、N-杂环卡宾催化烯丙基烷基化和酰化反应,可广泛合成P-手性化合物(图1a)。二级膦与各种亲电试剂的直接偶联是一种更为直接的获得具有不同官能团的手性膦化合物的方法,如过渡金属催化烷基化、芳基化、1,4-和1,6-加成反应等(图1

课题组在高压下发现首个三元锰基化合物超导体系

  非常规超导材料的探索和机理研究是凝聚态物理的重要方向。迄今为止,科学家发现了数以千计的超导材料和铜氧化物、铁基两个非常规高温超导家族。然而,基于3d过渡金属锰(Mn)的化合物超导体稀少,这主要归因于Mn([Ar]3d54s2)具有半满的3d壳层,使锰基化合物通常具有较强的磁性和磁拆对效应。201

上海有机所等在手性芳香螺缩酮化合物合成与应用中获进展

  手性芳香螺缩酮是一些天然产物、生物活性化合物和手性配体的重要结构单元,虽然已有一些合成方法报道,但如何直接通过催化过程对映选择性地获得手性芳香螺缩酮一直没有可行的方法。  上海有机所金属有机化学国家重点实验室丁奎岭课题组运用他们发展的SpinPhox/Iridium(I)催化剂(

不对称分裂的概念

一种细胞分裂的方式,就是指分裂的方式是不对称性质的,母细胞产生的两个子细胞的类型各不相同。比如神经干细胞。相反,对称性分裂就是产生两个相同的细胞。

什么是不对称PCR?

不对称PCR(asymmetric PCR)是用不等量的一对引物,PCR扩增后产生大量的单链DNA(SSDNA)。这对引物分别称为非限制引物与限制性引物,其比例一般为50——100:1。在PCR反应的最初10——15个循环中,其扩增产物主要是双链DNA,但当限制性引物(低浓度引物)消耗完后,非限制性

《Cell》:不对称的遗传

  对于许多种类的细胞,初级纤毛起着导体和天线的作用。在感光细胞中纤毛已演变为易扩张的、充满色素的光子筛,而在嗅细胞中它则转而负责接触有气味的物质。过去纤毛一度被认为是捕获的内共生体,现在人们则相信它很大程度上是真核生物的创造物,而非原核生物捕获和兼并所产生。运动纤毛与细菌鞭毛相似,但却显示出几个重

锁骨不对称常见吗?

  锁骨不对称是比较常见的情况。正常人体的很多结构是左右对称的,其中就包括锁骨。然而,双侧锁骨一般大小、粗细都一样,或者仅有细微差别。如果两边明显大小或粗细不一,那么一侧肯定有所异常。可能的原因包括发育异常、外伤、感染、斜颈或者长期不良姿势等。  锁骨不对称有时可能只是生理性原因导致,如睡姿、坐姿不

不对称转录的定义

不对称转录有两重含义:一是指双链DNA只有一股单链用作模板,二是指同一单链上可以交错出现模板链和编码链。不对称转录RNA转录时,一个转录子内是只转录一条链的DNA上的信息,表现为不对称转录。而DNA上遗传信息以基因为单位(真核),可以在不同的单链上。RNA在转录后,加工编辑的过程中,有些情况下会把不