数字PCR技术进展简介
聚合酶链式反应 ( polymerase chain reaction,PCR) 提出至今已有20年时间,期间PCR已发展成为分子生物学领域的一项关键技术和常规技术,极大地推动了生命科学各个领域的发展。特别是 90 年代后期,美国 ABI 公司推出的实时荧光定量PCR( real time PCR,qPCR) 技术及相关产品更是将PCR由体外合成及定性/半定量检测技术发展成为一种高灵敏、高特异性和精确定量的基因分析技术。尽管经过十几年时间的迅速发展,qPCR 技术已经用于除外伤和营养缺乏症外所有疾病的诊断,但是,在 PCR扩增过程中影响其扩增效率的因素有很多,不能保证在反应过程中扩增效率保持不变和实际样品与标准样品以及不同样品之间的扩增效率是相同的,由此导至其定量分析所依赖的基础——循环阈值(CT)不是恒定不变的。因此 qPCR 的定量只是“相对定量”,其准确度和重现性依然不能够满足分子生物学定量分析的要求。20 世纪末,Vog......阅读全文
数字PCR技术更准确检测新冠病毒
对于新型冠状病毒(SARS-CoV-2)的检测,实时定量PCR一直是金标准。不过对于某些患者,qPCR的结果似乎每天都在变化,而且有不少假阴性。近期的研究表明,ddPCR检测能够减少假阴性结果,而Bio-Rad Laboratories公司也利用其微滴式数字PCR系统开发出新型冠状病毒的检测产品
PCR技术迈入第三代-微滴式数字PCR
你说世界变化快不快,PCR已经迈入第三代!近日,一种称为微滴式数字PCR(ddPCR™)的新技术出现在《Analytical Chemistry》杂志上,它能够确定样品中待测靶分子的绝对数目。 第一代PCR就是我们目前最常用的终点PCR技术,通过凝胶电泳获得定性的结果。风靡全球的实时定
数字电桥的技术参数简介
测量参数:L/Q、C/D、R/Q、Z/Q、Z/D 测量频率:100Hz、120Hz、1KHz、10KHz、40KHz、100KHz 测量电平:0.1V、0.3V、1.0V 测量精确度:0.05% 测量速度:慢速:1.5次/秒 中速:5.1次/秒 快速:20次/秒 等效方式:串联、并联
什么是数字PCR
数字PCR即Digital PCR(dPCR),它是一种核酸分子绝对定量技术。相较于qPCR,数字PCR可让你能够直接数出DNA分子的个数,是对起始样品的绝对定量。PCR实际上是一个在模板DNA、引物(模板片段两端的已知序列)和四种脱氧核苷酸等存在的情况下,DNA聚合酶依赖的酶促合成反应,扩增的特异
什么是数字PCR
数字PCR技术是一种核酸分子绝对定量技术,其原理是将一个PCR反应体系分配到大量微小的反应单元中,在每个单元包含一个或多个拷贝的目标分子( DNA 模板) ,进行单分子模板扩增,扩增结束后通过阳性反应的数目和统计学方法计算原始样本中目标基因的拷贝数。
数字PCR应用(三)
Fluidigm公司于2006年底推出了基于集成流体通路(IFC)芯片的Bio-Mark™ 高通量基因剖析系统。 其创新在于集成液体通路技术:应用集成电路制造工艺(光刻)在硅片或石英玻璃上刻上许多微管和微腔体,经过不同的控制阀门控制溶液在其中的活动来完成生物样品的分液、混合、PCR扩增。图8. Bi
什么是数字PCR?
数字PCR技术也称为第三代PCR技术,是一种核酸高灵敏检测和绝对定量的新方法。同传统的PCR相比,数字PCR增加了对反应体系进行分隔(Partition)的操作,将几十微升的反应体系分隔成了数万微小独立反应体系,核酸模板在这种分隔过程中被充分稀释,理想状态下每个微滴中含有1个分子的核酸模板,扩增完
数字PCR的原理
数字 PCR 的工作原理在于将 DNA 或 cDNA 样品分割为许多单独、平行的 PCR 反应,部分这些反应包含了靶标分子(阳性),而其他不包含(阴性)。 单个分子可以被扩增一百万倍或更多。 在扩增期间,TaqMan® 化学试剂及染料标记探针可用于检测特定序列的靶标。 当不存在任何靶标序列时,没有信
数字PCR的原理
数字 PCR 的工作原理在于将 DNA 或 cDNA 样品分割为许多单独、平行的 PCR 反应,部分这些反应包含了靶标分子(阳性),而其他不包含(阴性)。 单个分子可以被扩增一百万倍或更多。 在扩增期间,TaqMan® 化学试剂及染料标记探针可用于检测特定序列的靶标。 当不存在任何靶标序列时,没有信
数字PCR应用(一)
一. PCR的发展历史 PCR技术自问世以来,在遗传病、病原体、癌基因等分子诊断领域和法医鉴定等方面发挥了巨大作用。第一代 PCR在进行扩增后通过凝胶电泳进行定性分析。 随着生物分子荧光技术的发展,1992年实时荧光定量PCR(Quantitative Real-time PCR, qPCR) 应运
数字PCR应用(二)
4、能够有效区分浓度差异(变化)微小的样品:更好的准确度、精密度和重复性,可以用于精确测定靶基因的相对表达,基因拷贝数变异分析等。图4. qPCR和dPCR的对比 四.dPCR的多指标检测的实现 如同qPCR一样,dPCR中实现多指标的并行检测能显著降低检测成本,获取更丰富的检测信息。 不同于qPC
数字PCR发展历程
传统的荧光定量PCR,经过多年的发展,已是很成熟的实验方案了。其中,最常用的是Taqman法和SYBR Green法。而在这二种方法当中,Taqman法又以其特异性高、定量精确,得到广大用户的认可。但是Taqman法PCR,它还是一个相对定量的办法。它测的是一个Ct值,也就是PCR到第几个循
数字PCR的优势
数字PCR是生命科学领域最引人瞩目的创新之一。与其他传统分子诊断技术相比,数字PCR技术的优势在于: 高灵敏度,可实现单分子级检测dPCR本质上将一个传统的PCR反应变成了数万个PCR反应, 在这数万个反应单元中分别独立检测目的序列,从而大大提高了检测的灵敏度。 高精度,可检测微
实验相关技术-|-PCR方法简介
PCR是聚合酶链式反应的简称,是一种酶促化学反应,可以在试管里将待测的目的基因在很短的时间内扩增物十万倍乃至上百万倍,大大提高了基因诊断的灵敏度,降低了分析的难度。PCR法是目前基因诊断中使用最多的方法。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究
RTPCR技术的简介
RT -PCR首先经反转录酶的作用以RNA合成 cDNA,再以cDNA为模板,扩增合成目的片段。RT-PCR技术灵敏而且用途广泛,可用于检测细胞中基因表达水平、细胞中RNA病毒的含量和直接克隆特定基因的cDNA序列。作为模板的RNA可以是总RNA、mRNA或体外转录的RNA产物。无论使用何种RN
实时荧光定量PCR技术简介
实时荧光定量PCR技术有效地解决了传统定量只能终点检测的局限,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。因此,实时荧光定量PCR无需内标是建立在两个基础之上的:1)Ct值的重现性PCR循环在到达Ct值所在的循环数时,刚刚进入
RTPCR技术的简介
RT—PCR(Reverse Transcription-Polymerase Chain Reaction)是将RNA的反转录(RT)和cDNA的聚合酶链式扩增(PCR)相结合的技术。首先经反转录酶的作用,从RNA合成cDNA,再以cDNA为模板,在DNA聚合酶作用下扩增合成目的片段。RT—PCR
关于PCR技术的历史简介
Khorana (1971)等最早提出核酸体外扩增的设想:“经DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可合成tRNA基因。” 但由于当时基因序列分析方法尚未成熟,热稳定DNA聚合酶尚未报道以及引物合成的困难,这种想法似乎没有实际意义。加上70年代初分子克隆技术的
合肥研究院开展数字定量PCR技术技术讲座
5月20日,中国科学院合肥物质科学研究院技术生物与农业工程研究所邀请南京润亚生物科技发展有限责任公司技术总监围绕数字定量聚合酶链式反应技术(简称PCR技术)进行专题培训。 培训老师首先阐述了PCR技术的发展历史,PCR经历了传统PCR(核酸电泳定性分析)、实时定量PCR(相对定量分析)、数字P
数字PCR技术精确检测癌症基因组扩增
来自斯坦福大学以及Bio-Rad的研究人员证实,数字PCR系统能够精确测定长期存放的癌组织样本中的癌症基因组扩增。该研究成果发表在《Translational Medicine》杂志上。 某些拷贝数变异(如基因组扩增)可能导致特定癌基因的过表达,推动癌症发展。靶定扩增的癌基因有望实现癌
数字PCR技术:从液体活检走向商业临床市场
2017年12月Bio-Rad BCR-ABL基因融合ddPCR检测试剂盒获得CE-IVD 认证(产品进入欧盟境内销售的通行证),这是基于ddPCR技术第一个获批的可用于临床检测的、基于血液样本的、用于监测慢性粒细胞白血病患者疗效的诊断试剂。在上周 JP摩根健康产业大会上, Bio-Rad CE
数字PCR技术能否终结核酸检测“灰区”?
郭永(清华大学供图)目前,新冠疫情仍在全球猖狂肆虐。虽国内新冠疫情防控卓有成效,但在西安、河南、天津、北京等地仍有确诊病例出现,特别是新冠病毒接连出现了德尔塔株、奥密克戎株等变异株,无疑让严峻的防疫形势“雪上加霜”。实时荧光PCR核酸检测被认为是新冠检测的金标准,但仍有亟须解决的问题,如单基因阳性、
数字PCR技术能否终结核酸检测“灰区”
郭永(清华大学供图)目前,新冠疫情仍在全球猖狂肆虐。虽国内新冠疫情防控卓有成效,但在西安、河南、天津、北京等地仍有确诊病例出现,特别是新冠病毒接连出现了德尔塔株、奥密克戎株等变异株,无疑让严峻的防疫形势“雪上加霜”。实时荧光PCR核酸检测被认为是新冠检测的金标准,但仍有亟须解决的问题,如单基因阳性、
逆转录PCR的技术简介
由一条RNA单链转录为互补DNA(cDNA)称作“逆转录”,由依赖RNA的DNA聚合酶(逆转录酶)来完成。随后,DNA的另一条链通过脱氧核苷酸引物和依赖DNA的DNA聚合酶完成,随每个循环倍增,即通常的PCR。原先的RNA模板被RNA酶H降解,留下互补DNA。RT-PCR的指数扩增是一种很灵敏的技术
数字PCR应用及前景
一. PCR的发展历史 PCR技术自问世以来,在遗传病、病原体、癌基因等分子诊断领域和法医鉴定等方面发挥了巨大作用。第一代 PCR在进行扩增后通过凝胶电泳进行定性分析。 随着生物分子荧光技术的发展,1992年实时荧光定量PCR(Quantitative Real-time PCR, qPCR) 应运
数字PCR的前生今世
近年来,数字PCR已取得了很大的进展,这在很大程度上要归因于商业化系统的开发,如QX200。这些技术进步似乎预示着一个转折点,更多的研究人员很快将能使用这种技术。这将推动新应用的开发,挖掘出数字PCR的全部潜能,并让科学家转向更强大的生物标志物研究,甚至单细胞分析。 2月底,Bi
数字PCR的研究历史
1983年由美国Mullis首先提出设想,1985年发明了聚合酶链反应,即简易DNA扩增法,标志着PCR技术的真正诞生。1999 年,美国学者 Kenneth Kinzler 与 Bert Vogelstein 首次提出了数字 PCR (digital PCR,dPCR)的概念,实现了核酸拷贝数绝对
数字PCR应用及前景
剖析|你想要知道的数字PCR应用及前景 一. PCR的发展历史 PCR技术自问世以来,在遗传病、病原体、癌基因等分子诊断领域和法医鉴定等方面发挥了巨大作用。代 PCR在进行扩增后通过凝胶电泳进行定性分析。 随着生物分子荧光技术的发展,1992年实时荧光定量PCR(Quantitative Real
数字PCR技术发现,癌细胞正在偷工减料
美国Stowers医学研究所的研究人员近日在《PLoS Genetics》上发文称,癌细胞可能正在简化它们的基因组。它们减少了核糖体DNA(rDNA)的拷贝数,从而更容易增殖。 “尽管核糖体DNA对细胞功能很重要,但由于定位和分析的挑战,我们几乎不知道是什么在控制其拷贝数的稳定性,”研究人员称
数字PCR技术在DNA定量精准等领域的应用
数字PCR先进的数字PCR技术实现了样品中的单分子核酸扩增,从而使的DNA定量的精准度提高到了全新水平。Philip与Stilla Technologies的首席执行官兼联合创始人Rémi Dangla进行了交流,讨论了数字PCR技术领域的进展和挑战。Stilla Technologies公司总部位