李玮:三次辞职只为一个“科研梦”

李玮,日本东京工业大学工学博士,加拿大多伦多大学博士后和北京大学工商管理硕士。河北省引进海外高层次人才“百人计划”首批入选者。主要从事化学合成研究,其手性化合物研究世界领先。 从政府公务员到公司总工程师,再到自己创业当总经理,李玮的职业换了很多次,但科学研究他一直没丢下。“1988年,我硕士毕业后直接分到了当时的省科委工业处,后来还担任过省海洋局副局长。尽管工作干得一直比较顺利,但总觉得自己喜欢科学研究。那时我经常白天上班,晚上到河北师大化学系做实验。”近日,笔者在晋州马于工业园区见到了这位传奇人物——— 河北博伦特药业有限公司总经理李玮。“好多人对我1995年辞职自费去日本读博士不理解。其实,很简单,我离不开科研,我在做实验时会觉得很快乐。”凭借着对科研的痴迷,这些年李玮已经研发出新化合物近百个、有机化学反应物3000多个。 李玮让一般人不理解的事还有很多:2005年,已经在加拿大定居5年并购买了房产的他,毅然决定......阅读全文

什么是手性化合物

手性化合物是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物手性当我们伸出双手,双手手心向上时,可以看出

手性气相色谱柱无法分离手性化合物怎么回事

手性气相色谱毛细管柱固定相的、重要的环糊精衍生物,其中用较多的篇幅介绍其制备方法、涂敷特性、手性选择性和可能的分离机制。对于所谓低流失的化学键合的环糊精衍生物柱,特别是改良的固载化工艺技术也有较详细的阐述。并从手性分离的角度讨论分离参数的控制、定性定量误差和实现分离最佳化的策略。

《Nature》挑战手性化合物:消失的镜像

  对映异构体分子像左手和右手。两种异构体虽然在化学反应中都很常见,但是,通常只有一种形式对生物学和医学有用。迄今为止,很多人认为把手性分子混合物完全转化为所需的目的形式是不可能的。在难题面前,慕尼黑工业大学(TUM)挑战成功。  生产具有非常特殊性质(例如抗菌性)的活性成分并不总是那么容易。原因之

MCI柱可以分离手性化合物吗

手性化合物的分离需要色谱柱含有手性分子。MCI是小孔树脂(聚苯乙烯基的反相树脂填料)。MCI 系列精细分离填料是在三菱化学Diaion 和Sepabeads 大孔吸附树脂基础上设计的,并不具备分离手性化合物的能力。

手性拆分的胺类化合物

外消旋体与另一手性化合物作用生成非对映异构体混合物,利用非对映异构体的物理性质差异较大的特点,可以通过结晶的方法分离,这样的手性化合物称为拆分剂。对于胺类化合物,一般用手性酸拆分。常见的手性酸拆分剂有:酒石酸,苹果酸,樟脑酸,樟脑磺酸,双丙酮-L-古龙酸,扁桃酸,苯氧丙酸,氢化阿托酸及它们的衍生物等

手性催化剂自负载研究取得新进展

含双金属Fe(II)、Rh(I)的手性配位聚合物催化剂的合成  手性催化剂的负载化是不对称催化中的一个挑战性问题。针对手性催化剂传统负载化方法存在的问题,中国科学院上海有机化学研究所金属有机化学国家重点实验室研究人员突破传统思路,基于分子组装原理,利用手性有机-金属组装体的手性环境、

商丘师院合成磷中心手性膦化合物

  近日,商丘师范学院教授刘澜涛课题组利用催化不对称碳氢键活化的方法,合成高光学纯度的磷中心手性膦化合物,相关研究发表于美国化学会的《有机化学通讯》上。  手性膦化合物是不对称催化中最为重要的配体和有机小分子催化剂之一,以手性膦化合物为配体的催化不对称氢化反应已经应用于多种手性药物生产。由于手性中心

广州地化所手性化合物手性选择性代谢机制研究取得进展

  手性是自然界普遍存在的一种分子不对称现象。拥有相同分子量、分子结构的不同手性异构体在生物体内往往表现出截然不同的生理活性和毒性。因此,手性也是生命科学领域重要的研究问题。环境污染物中存在着多种手性化合物,了解不同手性异构体在生物体内的差异性富集、代谢是正确认识和评价相关手性污染物生态风险的基础。

化合物的手性和旋光性是什么关系

如果是手性分子,则该化合物一定有旋光性,如果是非手性分子,则没有旋光性。化合物分子的手性是产生旋光性的充分且必要的条件。有些完全由手性分子组成的溶液也会出现没有旋光性的现象。彼此不成镜像关系的立体异构体互为非对映异构体。非对映体具有不同的物理性质。如沸点、溶解度、旋光性等都不相同。两个含有多个手性碳

成都生物所发明N亚磺酰基氨基酸酰胺化合物

  不对称有机小分子催化是近年来才发展起来的新型不对称催化方法,由于其所用的手性有机小分子催化剂具有结构简单、合成容易、造价低廉、所需生产工艺简单、环境友好等特点,对该领域的研究引起了人们的高度重视。手性硫原子是一类非常有用的手性源,其已被广泛用于手性助剂和手性配体,显示出了非常优良的立体控制能力,

我国科学家提出发展手性催化剂新方法

  近日,由中科院上海有机所丁奎岭博士课题组完成的“基于组合方法与组装策略的新型手性催化剂研究”项目,凭借发展手性催化剂的新方法和新策略,获得上海市2008年度自然科学奖一等奖。   手性科学和技术对于现代合成化学、药物化学和材料科学具有十分重要的意义。手性催化是获得光学活性物质最有效的方法,20

许禄专著《手性化合物的构效关系研究》出版

  由中科院长春应化所许禄研究员及其学生张庆友编著的科学专著《手性化合物的构效关系研究》一书,日前由中国科学技术大学出版社出版。   天然或半合成药物几乎都有手性。手性分子是化学特别是立体化学中的重要组成部分。一个药物之所以具有生理活性,是药物与生物体内的受体相互作用的结果。   该书以作者

手性碳原子的化合物的构型判定D、L构型

D、L构型甘油醛的D、L构型1951年,费歇尔采用(+)-甘油醛为标准物,并人为地规定在费歇尔投影式中第二号碳原子C2上的羟基,位于右侧的为D构型,位于左侧的为L构型。所以,D/L构型又称为相对构型。右图为用费歇尔投影式表示的甘油醛的D/L构型,并标出了碳的序号。参照甘油醛的构型的化合物其他对映异构

手性碳原子的化合物的构型判定R、S构型

R、S构型在楔形透视式观察法中,将排序最后的原子或基团放在离观察者最远的位置,剩余三个原子或基团排序确定手性碳构型:按顺时针方向排列为R-构型;按逆时针方向排列为S-构型。类似地,知道一个化合物分子的费歇尔投影式,可以利用它来确定手性碳化合物的R、S构型。下面分两种情况来讨论。(1)若优序性最小的基

上海有机所在不对称催化合成手性膦化合物方面取得进展

  手性膦化合物在不对称催化中是一种被广泛使用的配体,在各类反应,如不对称氢化、烯丙基化、偶联等反应过程中取得了极大的成功,膦配体通过与各种过渡金属配位来调控催化剂在反应中的催化活性和立体选择性,自身也可作为催化剂在各种反应中使用。目前,手性膦化合物的合成多是通过使用外消旋膦化合物与

河南大学发现手性含氮芳香杂环化合物合成新方法

   日前,河南大学教授江智勇在可见光不对称有机催化研究方面取得新进展,通过发展光敏剂与手性膦酸协同催化体系,为手性含氮芳香杂环化合物提供新的合成方法,该成果已在《美国化学会志》上发表。 可见光不对称催化是一种重要的手性化合物合成手段。它通过可见光驱动光敏催化剂至激发态后与底物发生单电子氧化还原

有机合成与药物化学中的(量子)计算化学研究取得新进展

  近日,由昆明植物所朱华结研究员主持的研究成果“有机合成与药物化学中的(量子)计算化学研究”荣获2008年度云南省自然科学二等奖。   该成果通过开展“(量子)化学计算-催化有机合成-天然产物类似物的设计合成与活性研究”多学科的交叉研究,将(量子)计算化学方法应用于不对称催化反应、复杂天然产物结

含膦的手性七元磺酰胺化合物的构建

  苯并七元磺酰胺是一类非常重要的分子骨架,尤其在药物开发和利用中常被作为一种特殊的药效基团用于临床研究。因此,发展高效构建功能化的手性苯并七元磺酰胺化合物的合成方法学具有重要的意义。  目前,文献报道构建这类手性骨架的方法主要包括(图1a):1) 分子内还原胺化反应,2) 分子内或分子间的C-H芳

周其林:执“手”开创催化梦

“深受鼓舞。”不久前,得知2021年诺贝尔化学奖颁发给从事不对称催化工作的两位学者时,南开大学化学学院教授、中国科学院院士周其林抬高了声调,“希望有更多聪明的年轻人从事这个领域研究。” 作为今年诺奖得主的同行,周其林在不对称催化领域深耕20年,发展出一类高效手性螺环催化剂,是迄今为止最高效的手性

关于不对称有机催化的硅氢化还原的几种模式

  羰基化合物及亚胺类底物的不对称还原是合成手性醇及手性胺类化合物的最为重要的策略之一。在目前的不对称还原方法中,有机催化的不对称硅氢化还原近年来被受到广泛关注,因为氢化硅烷具有价格低廉、化学性质稳定以及在实验操作上易于控制等优点,有利于实现工业化推广。近日,浙江工业大学的叶欣艺研究员、王鸿教授联合

酚类化合物-新型催化剂可直接制备酚类化合物

  传统酚类化合物的工业生产往往高能耗、高污染,且生产中还存在过度氧化以及收率低、副产物多等问题。现在这些酚类化合物有望采用双氧水等清洁氧源,通过环境友好的苯羟基化反应一步制备,而不像传统方法需要繁琐的多个反应步骤,能耗大、高污染、收率低(传统方法收率只有5%)。这是南京工业大学材料化学工程国家重点

手性分子合成救星——不对称催化

2021年度诺贝尔化学奖被授予德国有机化学家利斯特和美国有机化学家麦克米伦,以表彰他们在“发展不对称有机催化”方面做出的卓越贡献。不对称有机催化深刻地影响了药物研究:它简化了药物合成中的环节、降低了能源消耗,使化学合成更简捷、环保、经济。我们的生活和工业生产都离不开各种化学合成产品,催化剂是化学家用

大连化物所研究发现碳纳米管内手性催化加速现象

  日前,中科院大连化学物理研究所李灿院士领导的研究团队将手性修饰的Pt纳米催化剂粒子装入碳纳米管内,发现碳纳米管显著加速手性催化的现象。  手性催化(也称不对称催化)是当今化学领域的前沿研究方向,是合成手性药物中间体的重要技术。近年来,手性药物工业的迅速发展使手性化合物的合成更加受

成都生物所β氨基硝基烯烃的不对称还原研究取得突破

     反应过程图   手性β-胺基硝基烷烃是一类重要的手性化合物,它不仅是手性1, 2-二胺的直接前体,同时还可以转化为手性α-胺基羰基化合物。理论上讲,对β-胺基硝基烯烃进行不对称催化还原是合成手性β-胺基硝基烷烃化合物最简便直接的一种方法。然而,由于硝基官能团的存在,致使该

手性有机合成的研究进展

 手性化合物的不同立体异构体通常具有不同的性质,特别是不同的生物活性。所以,得到正确的立体对映异构体对于合成手性药物非常重要。我们在手性分子的立体选择性合成方面已经取得了很大进步,但仍然缺少高效的方法,为此,我们需要研发新的手性催化剂和不对称反应。手性有机金属催化剂是研究的重点,它包括金属原子和手性

手性有机合成的研究进展

 手性化合物的不同立体异构体通常具有不同的性质,特别是不同的生物活性。所以,得到正确的立体对映异构体对于合成手性药物非常重要。我们在手性分子的立体选择性合成方面已经取得了很大进步,但仍然缺少高效的方法,为此,我们需要研发新的手性催化剂和不对称反应。手性有机金属催化剂是研究的重点,它包括金属原子和手性

新成果助力手性胺类和醚类化合物高效合成

《中国科学报》记者从武汉大学获悉,该校化学与分子科学学院陈才友教授的研究成果“铜催化氧亲核试剂的立体汇聚烷基化”日前在《自然》在线发表。C-O键广泛地存在于包括药物、生物活性分子和材料分子等有机化合物中,因而C-O键的高效构建在有机合成中极为重要。在药物合成中,杂原子的烷/芳基化是使用率最高的反应,

新成果助力手性胺类和醚类化合物高效合成

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/497769.shtm《中国科学报》记者从武汉大学获悉,该校化学与分子科学学院陈才友教授的研究成果“铜催化氧亲核试剂的立体汇聚烷基化”日前在《自然》在线发表。   ?Cu/噁唑啉催化的立体汇聚C-O

手性碳原子的化合物的构型判定苏型与赤型

苏型与赤型苏型与赤型概念来自于糖类化学中的苏阿糖和赤藓糖。它们的费歇尔投影式及名称如下:在丁醛糖的四个旋光异构体中,(I)和(II)、(III)和(IV)呈实物和镜像对映而不重合的关系,各构成一对对映体。而(I)和(III)、(I)和(IV)、(II)和(III)、(II)和(IV)不呈实物和镜像的

兰州化物所不对称催化反应研究取得系列进展

   一步构建六个手性中心的不对称催化反应   含有多个连续手性中心的结构单元常见于各种天然产物和人工合成的手性药物中,但由于异构体的数量随着手性中心的数目成指数上升,由此导致高选择性地合成单一异构体非常困难。这也是一直以来不对称催化研究领域最具挑战性的课题之一。   在国家自然科学基金和